Non-Solenoidal Startup of the Ultra-Low Aspect Ratio PEGASUS ST

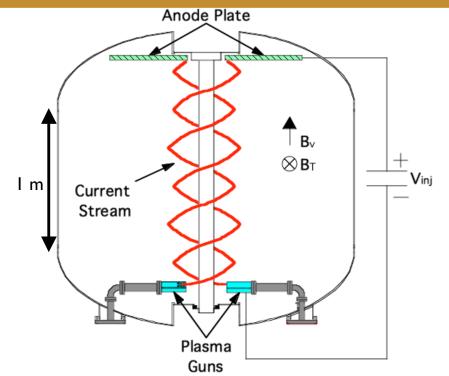
Presented by

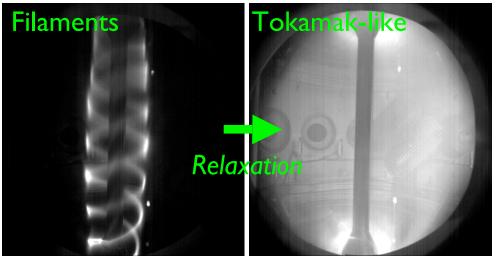
Nicholas Eidietis (ORAU)

On behalf of the members of the PEGASUS Toroidal Experiment

University of Wisconsin - Madison

APS DPP 2007 Orlando, FL November 12, 2007





PEGASUS non-inductive startup utilizes washergun current sources for DC helicity injection

Motivation

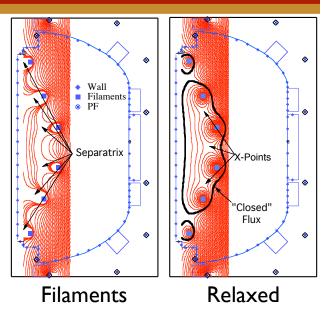
- 1. Near-term: Augment limited ST V-s
- 2. Long-term: Eliminate CS entirely
- Advantages of washer-gun design:
 - 1. Small
 - 2. Simple installation
 - 3. Clean: high Z impurities stay in aperture
- Current filaments injected along B
 - Guns biased relative anode plate
 - 1-2 kA per gun
- Relaxation to *tokamak-like* plasma @ low B ($B_T \approx 0.01$, $B_Z \approx 0.005T$)
 - Filaments overwhelm B, reconnect
 - Simulations indicate not true closed flux during electrostatic injection

Conditions for non-inductive tokamak-like formation & sustainment via DC helicity injection

I. Magnetic constraints on formation

- Low B_Z to allow filament reconnection, "closed flux" formation
- B_Z consistent with MHD equilibrium

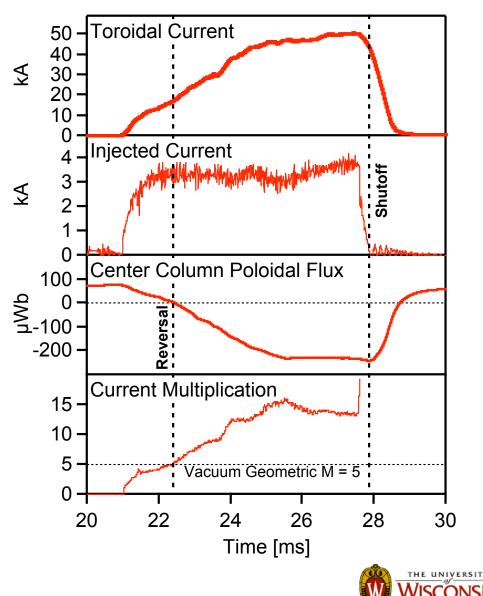
2. Helicity constraint on sustainment

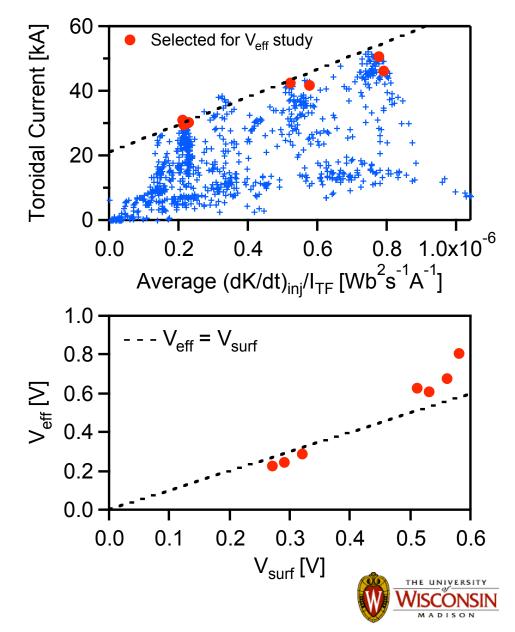

• Equating AC (inductive) & DC helicity injection terms:

$$V_{loop}\Psi_t = V_{inj}\Psi_{inj} \rightarrow V_{eff} = V_{inj} \frac{\Psi_{inj}}{\Psi_t} - \frac{V_{inj}}{Flux}$$

- V_{eff} must be sufficient to sustain plasma against helicity dissipation
- Assumes all injected helicity dissipated in plasma, not open field lines

3. Power constraint on sustainment (Helicity balance assumed)


Input power sufficient to sustain plasma at efficiency Toroidal $\mathcal{E} = \frac{P_{dis}}{P_{inj}} = \frac{I_{\varphi}}{I_{inj}} \frac{V_{eff}}{V_{inj}} = \frac{\Psi_{inj}}{\Psi_t} \frac{I_{\varphi}}{I_{inj}} \overset{\text{Injected}}{\longleftarrow} \overset{\text{$


Relaxation significantly enhances non-inductive current drive capability

- $I_{\phi} > 50$ kA driven by $I_{inj} \le 4$ kA
- Center column flux reversal \Rightarrow relaxation
 - Indicates filaments have overwhelmed B_Z
- Current multiplication (I_{ϕ}/I_{inj}) > geometric
 - Not constrained by vacuum windup
- τ_{plasma} , τ_{gun} decoupled
 - $I_{\phi} > 40$ kA after $I_{inj} = 0$
 - Relaxed I_{ϕ} not "windup" current

Maximum current drive limited by helicity injection rate

- Max I_{ϕ} offset linear to injected dK/dt
- dK/dt limiting I_{ω} ?
 - Compare V_{eff} & decay V_{loop}
- Decay V_{loop} estimated by V_{surf}
 - Center column limited plasmas
 - Measured by center column flux loop
- $V_{eff} \approx V_{surf}$ indicates:
 - 1. Current drive limit due to dK/dt limit
 - 2. Helicity efficiently transported into plasma
 - Primarily available for current drive, not dissipated on open field lines

Plasma gun current drive expands PEGASUS operating space to $I_N > 12 \text{ MA/m-T}$

60

40

20

0

12

20

₹Ă

(a) Currents

22

(b) g Profile Evolution

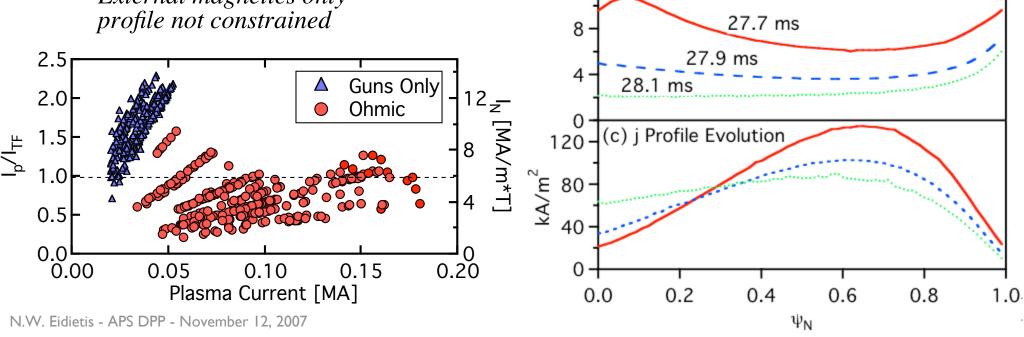
Guns off

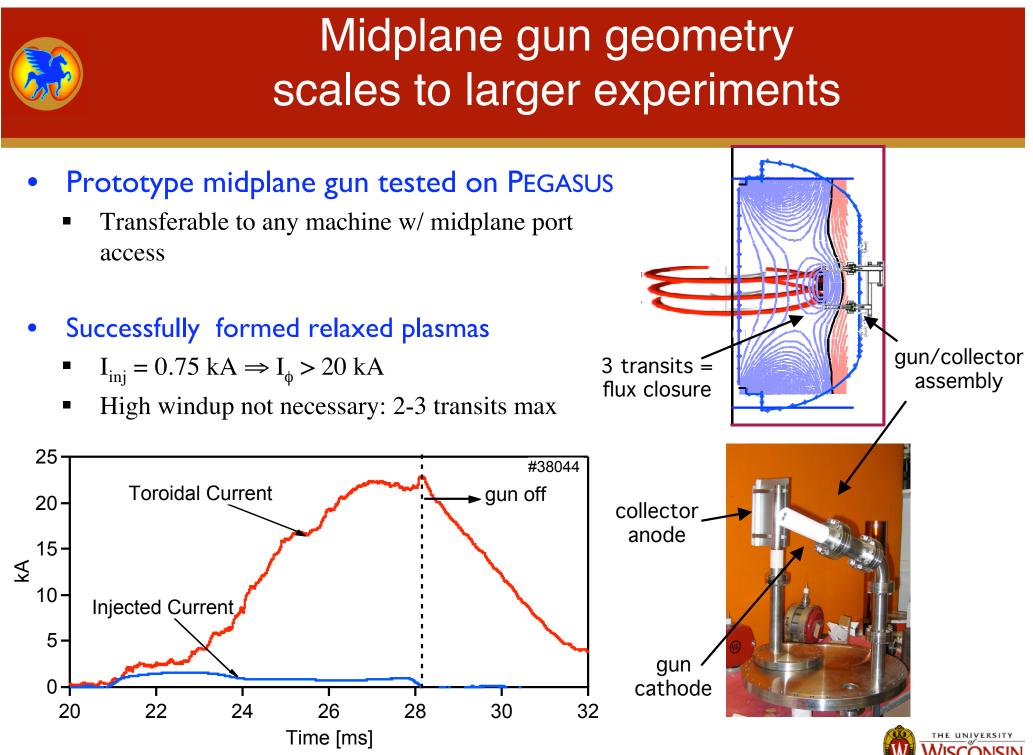
30

28

Toroidal Current

26


TF Rod Current


24

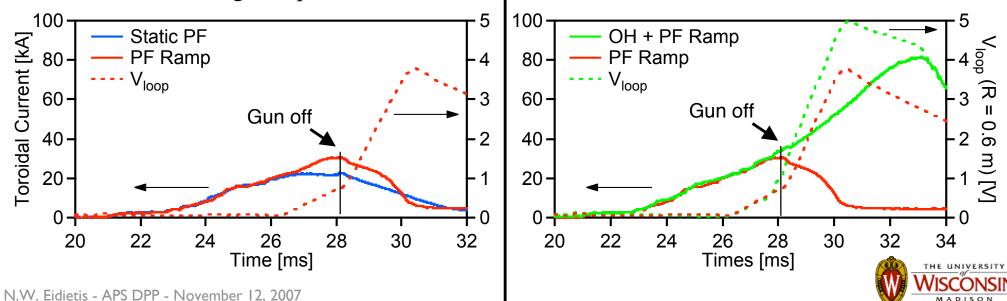
Time [ms]

Ohmic ops: $I_N \approx 6$ "soft-limit"

- Low order tearing modes limiting
- Minimal shear stabilization
- $I_N > 6$ achieved transiently
- Gun ops: $I_{\phi}/I_{TF} > 2 (I_N > I2)$
 - Edge current drive may enable increased q_0 shear stabilization,
 - External magnetics only -profile not constrained

Relaxed midplane target plasma handed off to PF-only and OH induction

PF induction only:


- Outboard PF coils only:
 - $V_{loop} \propto dB_Z/dt$
- Before gun shut-off: $I_p \uparrow 50\%$
- After shut-off, necessary V_{loop} (B_Z) not compatible w/ force balance
 - Plasma driven into core
- More robust target required

OH induction:

- •Additional V_{loop} w/o strong radial force
- •Steady growth if V_{loop} *after* shutoff

 Possibly indicates transition from tokamak-like to true tokamak after guns shut-off

Plasma compresses radially, but slowly

Pegasus is poised to pursue high-power non-solenoidal discharges

Summary

- Plasma gun DC helicity injection is effective startup technique
- Current drive limited by helicity injection rate
- Plasma gun startup enables high I_N operation
- Midplane array shows promise for startup on any device w/ midplane port access
 - Readily coupled to OH induction

Future Work

- 3-gun midplane array installation underway
 - Improved power supplies \Rightarrow more helicity injection
 - Should provide > 100 kA relaxed plasma w/ static PF
 - Initial operation 12/07

Related Posters

Tuesday Morning

• GP8.00134 Nonlinear MHD simulation of DC helicity injection in spherical tokamaks - R.A. Bayliss

Thursday Morning

- TP8.00108 Overview of the PEGASUS Experimental Program A.C. Sontag
- TP8.00109 Operations at High I_N in the PEGASUS Toroidal Experiment E.A. Unterberg
- TP8.00110 Non-solenoidal startup of PEGASUS plasmas using DC helicity injection and poloidal field induction B.J. Squires
- TP8.00111 Global energy confinement studies on the PEGASUS Toroidal Experiment D.J. Battaglia
- TP8.00112 Initial Edge Stability Observations in the PEGASUS Toroidal Experiment M.W. Bongard
- TP8.00113 An Upgraded Soft X-ray Pinhole Camera for Current Profile Measurements on the PEGASUS Toroidal Experiment - M.B. McGarry

