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Sweeping frequency BAAEs observed and identified on NSTX

Typical parameters: B = 0.45T , R/a(m) = 0.85/0.66, β0,pl/β0, f ast (%) = 34/15, PNBI = 2MW.
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Frequencies sweep up (or down) from the rotation level, fpl = 0−40kHz

q-profile: reversed in NSTX.

Frequency is much lower than RSAE/TAE frequency, vA/2qRand ω∗ < 1kHz

BAAEs in NSTX and JET were first reported in Gorelenkov, APS’06,EPS’07. May
be similar to low-f cascades, Lauber, Varena’06.
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q-profile: reversed in NSTX.

Frequency is much lower than RSAE/TAE frequency, vA/2qRand ω∗ < 1kHz

BAAEs in NSTX and JET were first reported in Gorelenkov, APS’06,EPS’07. May
be similar to low-f cascades, Lauber, Varena’06.

BAAEs are ubiquitous in high-β NSTX plasma
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What is the importance of low- f instabilities?

• Low-f instabilities called here Beta-induced Alfvén Acoustic
Eigenmode (BAAE) helps to study two fundamental MHD
waves: Alfvén and acoustic.
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loss of injected beam ions (Fredrickson’06).
• MHD spectroscopy application for q-profile diagnostic:

– BAAE can complement MHD spectroscopy in low-,
medium-β plasmas

– BAAE maybe the only MHD spectroscopy tool in high-β
plasma, such as in STs when RSAEs are suppressed.

• Due to coupling to acoustic branch strong interaction with
thermal ions is expected:
– ⇒ strong drive due to fast ions and strong damping due to

thermal ions,
– ⇒ potential for energy channeling from beam ions directly to

thermal ions (α-channeling, Fisch’93, hot-ion mode, LiWall).
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Theory outline of Alfvén/acoustic continuum

Simple shear Alfvén and acoustic coupled equations capture main effects
in low-β , large aspect ratio plasma, low ω∗, (Cheng, Chance ’86):

Ω2y+∂ 2
‖ y +γβ sinθ z = 0 (Al f venic) (1)

Ω2
(

1+
γβ
2

)

z+
γβ
2

∂ 2
‖ z +2Ω2sinθ y = 0 (acoustic) , (2)

where Ω ≡ ωR0/vA, y≡ ξsε/q, ξs ≡ ~ξ ·
[B×∇ψ ]

|∇ψ |2
and z≡ ∇ ·~ξ , k̂‖ ≡ i∂‖.

Geodesic curvature coupling: m Alfvénic and m±1 acoustic harmonics.
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where Ω ≡ ωR0/vA, y≡ ξsε/q, ξs ≡ ~ξ ·
[B×∇ψ ]

|∇ψ |2
and z≡ ∇ ·~ξ , k̂‖ ≡ i∂‖.

Geodesic curvature coupling: m Alfvénic and m±1 acoustic harmonics.
Various solutions follows (WinsorPF’68, GoedbloedPF’75,

MikhailovskiPlPhR’75,’98, ChuPF’92, TurnbullPF’92, ZoncaPPCF’96, van der Holst PoP’00, Breizman PoP ’05, Berk NF’06)

• Pure acoustic modes (AMs) Ω2 = 1
2γβk2

‖.

• Pure Alfvénic branch Ω2 = k2
‖ + γβ

(

1+1/2q2
)

.

• GAMs: Ω2 = γβ
(

1+1/2q2
)

in the assumption of Ω2 ≥ γβ .

• Modified shear Alfvén branch Ω2 = k2
0/

(

1+2q2
)

exists for Ω2 ≪ γβ .
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Alfvén/acoustic coupling in toroidal equilibrium
(schematic)

• Alfvén (A) continuum at low frequency: Ω2 = k2
0,±1

• Acoustic (a) branch Ω2 = γβk2
0,±1/2(1+δ )
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Alfvén/acoustic coupling in toroidal equilibrium
(schematic)

• Alfvén (A) continuum at low frequency: Ω2 = k2
0,±1 /

(

1+2q2
)

(modified)

• Acoustic (a) branch Ω2 = γβk2
0,±1/2(1+δ ) is coupled via m±1

sidebands with modified Alfvén continuum (m harmonic) due to
geodesic curvature and pressure.
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Analytic dispersion for Alfvén/acoustic continuum gap is
derived

• Consider high aspect ratio, monotonic q-profile, A/10 of JET.

• Ω+ =
√

γβ/2/qr (compare with GAM Ω =
√

γβ
(

1+1/2q2
)

).
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Exact MHD (NOVA) continuum is in good agreement with theory.
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• torus - - -

• cyllinder

Exact MHD (NOVA) continuum is in good agreement with theory.

Two global modes exist:
Core/low-shear localized BAAE (A): ω = vAk‖/

√

1+2q2
0 - sweeps in ω

Gap BAAE (A-a): Ω+ ≃ vA
√

γβ/2/qminR bounds frequency sweep,
quantitatively frequency differs from measured at JET by 50%.
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NSTX experiments aimed at detailed BAE studies

• Low density ne ≃ 3 × 1019m−3,
PNBI = 2MW, ENBI = 90keV.

• 12 channel MSE measures q(r)

• Address JET experiment/theory
frequency mismatch.
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TAE/RSAEs are suppressed (E. Fredrickson EPS’07) and BAAEs are
excited by beams in high-β NSTX plasmas (typically βpl >∼ 15%).
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Numerically global BAAE modes are found at qmin surface in NSTX
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• MSE measured inversed q-profile is used in NOVA modeling.

• At high-β0 = 34%, BAE is wide, up to TAE frequency.

• Two Alfvén/acoustic (A/a) continuum branches are found with Ω2 < γβ ,
n = 2
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• MSE measured inversed q-profile is used in NOVA modeling.

• At high-β0 = 34%, BAE is wide, up to TAE frequency.

• Two Alfvén/acoustic (A/a) continuum branches are found with Ω2 < γβ ,
n = 2

• Low Shear (LS) BAAE frequency
– does not depend on β for q close to rational
– continuously transporms to gap mode (due to higher β , strong coupling)

– LS fBAAE is close to modified Alfvén branch fA = vAk‖/
√

1+2q2
min|r=0.
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NOVA: BAAE broadens radially as qmin decreases
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• BAAE frequency
sweeps as q-profile
relaxes.

• One dominant har-
monic m= nqmin = 3.

• Strong similarity to
RSAE to TAE transi-
tion.

• BAAEs interact with
the continuum.
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Ultra SXR agrees with NOVA radial structure broadening

Raw USXR signal (∼BAAE structure) Radial profile evolution
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Reflectometer confirms localized radial displacement of
BAAEs
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• Vertical axis refers to points
• - #123816.

• Measurements are taken at
signal maximum.

• Internal fluctuations level
δn/n∼ 2×10−3.
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In high-β plasma BAAEs may be the only MHD
spectroscopy tool for determining q-profile
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• RSAE/TAEs can be used to infer
qmin in low-, medium-β plasma

• Zero BAAE frequency point
(plasma frame) indicates rational
qmin.

• BAAE activity is terminated at
t = 0.275s.
Potential interplay of beam driven
instabilities with internal m = 3/n = 2
kink-like instability - similar to
TAE/sawtooth nonlinear interplay
(Bernabei’01, Sharapov’06).

• RSAE/TAE and BAAE inferred qmin
values are in agreement with MSE
measurement.
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Multiple BAAE observations in NSTX
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• Negative n, |n| ≤ 5 BAAEs are ex-
cited, electron rotation direction.

• MSE measured reversed q-profile,
high-β0,tot > 30%.

• Only LS-BAAEs were identified with
modified Alfvénic wave dispersion -
no gap modes.

• Low shear regions, q0,min, are points
of BAAE localization.

• Use to help to validate the theory.
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Identified BAAE frequency evolution is consistent with
theory predictions
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Applied modified Alfvénic dispersion with rotation frot (qmin) = 19−23kHz, frot (q0) = 26−30kHz,

qo,min is from MSE: f = fBAAE+n frot , n < 0

Modified Alfvénic wave dispersion is essential: fBAAE = vAk‖/
√

1+2q2
0,min

In addition to BAAE several other activities has to be identified.

Possible other instabilities are TFAEs - toroidal Flow induced AEs (van der Holst,2000, TMA?).
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What are the effects of BAAEs on beam ion
confinement?

• BAAE frequency range avalanch ef-
fect is reported in E.Fredrickson and
D.Darrow talks;
Possibly “Sierpes” instabilites by
Garcia-Munoz?
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Model beam ion diffusion in TRANSP did not explained expected (from MSE)
plasma current redistribution.
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Discussion and Summary

• Theory and numerical analysis show:
– the existence of geodesic curvature induced gaps in the Alfvén/acoustic

continuum below GAM frequency (van der Holst’00),
– low-n global beta-induced Alfvén/acoustic eigenmodes - BAAEs are found,
– BAAEs exist in finite beta plasma within wider BAE gap.
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– frequency is lower 0 < Ω <
√

γβ/2/qmin vs. Ω =
√

γβ
(

1+1/2q2
min

)

for
BAE/GAM.

– both low shear and gap BAAEs can coexist (similar to RSAE/TAEs)

• Kinetic modification of MHD theory is required for new global
modes (Zonca’96, Mikhailovski’98):
– damping is expected to be strong due to phase velocity of acoustic

component close to thermal ion velocity.
– dominant electron plasma is expected to be favorable for BAAE existence.
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Summary (continued)

• NOVA shows existence of BAAEs in NBI NSTX plasmas.

• Quantitatively NOVA predicts BAAE frequency evolution in agreement
with observations on NSTX up to the BAAE gap.
– MSE measurements on NSTX seem to validate theory and MHD (qmin)

spectroscopy via BAAEs.
– Maybe useful for burning plasmas, ITER.

• Need to reconcile theory and experiment via kinetic theory especially
for the case of BAAE transforming into a gap mode
– JET frequency mismatch has to be understood.

• BAAEs are expected in plasmas with Te > Ti and strong drive from fast
ions and/or ηi (ITG-like drive)
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