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Electron Transport is an Outstanding Problem in 
Fusion Research 

•  Anomalous heat losses still plague fusion 
experiments – Why? 

•  What is the nature of electron turbulence? 
•  Can this turbulence be controlled and/or 

suppressed? 
•  Does electron turbulence lead to large levels of 

transport? 
•  Understanding turbulent transport is essential to the 

viability of fusion reactors 
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NSTX is a Unique Laboratory for Studying Electron Losses 

•  Low aspect Ratio ST, Neutral Beam Power, Strong Sheared 
Flows, High      , Strong Reversed Shear, Good Curvature 

•  Ion transport in NSTX near neoclassical levels 
–  Electrons are dominant loss mechanism 
–  Kaye et al. PRL 98, 175002 (2007) 
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Electron and Ion Thermal Diffusivities in NSTX. 

Color bars indicate calculated neoclassical transport 
levels. Ref: Kaye et al 2007.
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Tools to Study Electron Turbulence on NSTX 

•  Experimental: High-k Scattering System 
–  Unique scattering system to measure electron scale fluctuations 
–  See D. Smith YI2.00005  

•  Experimental: Multi-Channel Motional Stark Effect Diagnostic 
–  Detailed measurements of q profiles, magnetic shear 
–  See H. Yuh TI2.00005 

•  Theoretical: Gyrokinetic Simulations 
–  GK Sims on STs have been met with difficulty  

•  GS2: Applegate PhD Thesis, Imperial College London 
–  Low freq microtearing and adiabatic ion ETG modes sometimes fail to 

converge 
–  Coupling between ion and electron scales requires large simulations 

•  But, if sheared flows in NSTX suppress low frequency 
modes, may not need to worry about scale coupling: better 
simulation resolution 
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GYRO is a 5D Eulerian Global Continuum Non-Linear 
Gyrokinetic Simulation Tool 

5 

•  Uses advanced numerical 
techniques to obtain higher 
accuracy with lower resolution 

•  Flux tube or global 
•  Adiabatic Ions, Adiabatic 

Electrons, Kinetic Electrons and 
full GK compatibility 

•  ExB shear flow compatibility 
•  Highly parallelizable 

J Candy, R. E. Waltz et al. J. Phys Conf Ser 78, 012008 (2007)
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GYRO In Good Agreement with Linear Calculations from 
Many Codes 
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Linear ITG test case.

GYRO data: Peterson. Other data see Dimits et al (2000)
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Adiabatic Ion Approximation Allows for Faster Linear 
Calculations 

•  Adiabatic Ions give good agreement to full GK simulations if 
one uses an effective ion temperature that accounts for 
impurities 

•  Discrepancies at low wavelengths from Adiabatic Ion 
Approximation 
–  Non-linearly destabilizing, unless modes are suppressed 
–  Linearly stabilizing: 
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Using Adiabatic Ions with Model Impurities is a Good 
Approximation to Full Gyrokinetic Simulation 
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•  124 cm, 245 ms, He 

NSTX Baseline Shots 

124889A08 
•  135 cm, 330 ms, D2 

126169B01 
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NSTX’s Unique Geometry Complicates the Problem 

•  Low aspect-ratio, high   and strong shaping of NSTX cause 
strong variation of grid metric coefficients. 

•  May need higher resolution to accurately resolve 
•  Being investigated 
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NSTX 
Raw Data 

TRANSP 
Profile Analysis 

trgk 
 (D. Mikkelsen) 

converts profiles to 
GYRO form 

GYRO 
Reads Experimental 

INPUT_profiles 
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GYRO 
Simulation 

VUGYRO  
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User 
Vary Simulation 

Parameters 

From NSTX to GYRO 
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Linear Simulations Show ETG Unstable, ITG Stable in NSTX 

•  Peak ~ 0.3 
•  Ion scales show no growth 
•  Mode structure is even 
•  Electrostatic 
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Negative Shear Does Not Linearly Stabilize NSTX Discharges 

•  Reverse Shear does raise critical ETG gradient, but not 
enough to account for observations (H. Yuh TI2.00005) 

•  Spectrum shifts downward with shear  
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Zeff May Also Alter Linear Stability for NSTX by raising Linear 
Critical Gradient 

•  Effects of impurities important (What about Lithium?) 
•  Again, spectrum shifts downward as linear threshold 

increases 
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At high q, multiple eigenmodes appear. Fastest growing 
mode depends on temperature gradient. 

•  “Broad” mode is stronger at gradients closer to critical gradient 
•  “ ” mode becomes dominant at higher driving gradients 
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As q Increases, Linear Critical Gradient Approaches a 
Constant 
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• In all cases, experiment is well above linear threshold for 
ETG instability

• High gradient mode follows same spectrum shifting pattern
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Future Goals: Nonlinear Simulations and Connection to 
Transport 

•  D. Smith (YI2.00005) suggests that the relation between the 
measured high-k turbulence and electron transport is not 
straightforward 

•  Need non-linear simulations 
•  Hypothesis: Strong ExB flows in NSTX suppress the long-

wavelength modes that make full all-species gyrokinetic 
electron-ion simulations difficult 
–  Do not have interactions with low frequencies 
–  Can use reduced (adiabatic) ion models to relax resolution 

requirements 
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Conclusions 

•  We have successfully completed Electrostatic linear 
gyrokinetic simulations of NSTX 

•  NSTX discharges are linearly unstable to ETG and stable to 
ITG 
–  Microtearing & TEM may be at play too 

•  Reverse Magnetic Shear alters linear critical gradients, but 
not sufficiently to explain observed gradients in NSTX 
–  Possible non-linear suppression of eddies: Jenko and Dorland (2002) 

•  Multi-mode parameter scans suggest spectrum shifts with 
critical gradient: more stable, lower frequency peak 

•  Adding ExB shear may suppress long wavelength modes in 
simulations, thereby reducing the resolution requirements for 
non-linear runs 
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