QD NSTX

U.S. DEPARTMENT OF
Supported by

Office of

E N E RGY Science

On the Analysis of HHFW Heated Plasmas in NSTX

College W&M
Colorado Sch Mines
Columbia U
CompX

General Atomics
INL

Johns Hopkins U
LANL

LLNL

Lodestar

MIT

Nova Photonics
New York U

Old Dominion U
ORNL

PPPL

PSI

Princeton U
Purdue U

SNL

Think Tank, Inc.
UC Davis

UC Irvine

UCLA

UCSD

U Colorado

U lllinois

U Maryland

U Rochester

U Washington
U Wisconsin

B.P. LeBlanc!, R.E. Bellt, L.A. Berry?, P. Bonolié, D.L. Green?,
R. W. Harvey4, J.C. Hoseal, E. Mazzucato?!, C.K. Phillips?,
A.L.Roquemore?, P.M. Ryan?, G. Taylor?, J.R. Wilson?, J. Wright?,
H. Yuh® and the NSTX Team
"PPPL, Princeton, NJ, 2°ORNL, Oak Ridge, TN; SPSFS-MIT,
Cambridge, MA; 4CompX, Del Mar, CA; °Nova Photonics Inc.,
Princeton, NJ

51st Annual Meeting of the Division of Plasma Physics
2-6 November 2009, Atlanta, GA

RRC Kurchatov Inst

Culham Sci Ctr
U St. Andrews
York U

Chubu U

Fukui U
Hiroshima U
Hyogo U
Kyoto U
Kyushu U
Kyushu Tokai U
NIFS

Niigata U

U Tokyo

JAEA

Hebrew U

loffe Inst

TRINITI

KBSI

KAIST
POSTECH
ASIPP

ENEA, Frascati
CEA, Cadarache
IPP, Julich

IPP, Garching
ASCR, Czech Rep
U Quebec




Newer TORIC in TRANSP Provides Improved Analysis Tool
Supplement analysis with CQL3D

« TRANSP makes use of recent version of TORIC, which can compute
HHFW propagation and absorption in NSTX

— M. Brambilla, Plasma Phys. Control. Fusion 44 (2002) 2423-2443

 TORIC calculates power deposition into all species including fast ions
— But TRANSP RF Monte Carlo Fokker-Planck operator is not ready
— Self-consistent calculation of fast ions not available for NBl + HHFW plasmas

 Use CQL3D to estimate neutron rate generated by fast ions

 Analyze two cases
— HHFW generated high-T, plasmas
— HHFW heating of NBI-induced H-mode plasmas
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TORIC/TRANSP Calculation Assumptions
Power absorption hypothesis

« TRANSP/TORIC assumes that only the fast wave is propagating
— AORSA calculations show mode-conversion effects small

 Assume that all the antenna power is absorbed

— This assumption is not met experimentally, but provides a uniform reference

« Edge/coupling physics effects have been identified: excitation of surface wave and
PDI ion heating, which can absorb up to 30% of the power in the plasma periphery

e J.C Hosea,et al., Physics Plasmas 15 (2008) 056104
« T. Biewer et al, Physics of Plasmas 12 (2005) 056108

— Efficiency will be addressed later by comparing with experimental neutron
production rate

* Notation
— Qa = Volint(ga) where ga is the total power density coupled by the antenna
— Qe = Volint(ge) where ge is the power density coupled to electrons
— Qf = Volint(gf) where df is the power density coupled to the fast ions
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High T, Achieved during HHFW Heating in He and D, Plasmas
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Competition between Electron and Fast-ion Damping
Qe reduced when fast ions are present

e All HHFW power absorbed by TORIC/TRANSP RESULTS
electrons prior to NBI pulse N T Qs |
starting at 0.2s. % A ’M M,Qe

ug} 1 — [ " | « Qf —
| S o L

« After NBI onset, the fast-ion 0.1 0.2 e 0.5
population absorbs HHFW power — _ . ,
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per . sS85 _NBI\ /
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Time(s)
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single time point calculations Q,: power delivered by antenna
done with AORSA, GENRAY and Q.. power absorbed by electrons
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@ NSTX 51st Meeting APS-DPP, HHFW Analysis, B.P. LeBlanc, PPPL Nov 2-6, 2009



HHFW Heating of NBl-Induced H-mode Plasma
Achieved using k;=-13m""

* Previous attempts at HHFW heating of NBl-induced H-mode
plasmas were unsuccessful , but recent application of
k/~13m™* HHFW power resulted in measurable change in
the stored energy and kinetic measurements.

« Better understanding of edge effects and attention to the
edge density were conducive to this power coupling
Improvement

B.P. LeBlanc, 16th RF Conference, AIP Conference
Proceedings 787, p.86

. J.C. Hosea, et al., RF Conference, Ghent, Belgium, 2009
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Measured W, and T, Increase during HHFW Heating of
NBIl-induced H-mode Plasma

6 . ) ' I 130808 130
Pe .'
(kPa) % __ +
gt
2 . C \
R T
. Tey <ol
Pe
(kPa)
k@=—81m

S i - | & I N 1 ' 50
40 80 120 160 0.20 0.30 0.40 0.50
R (cm) TIME (sec)
Will look at shot in top panel —— >

@ NSTX 51st Meeting APS-DPP, HHFW Analysis, B.P. LeBlanc, PPPL Nov 2-6, 2009



Measured Stored Energy and Neutron Rate Exceed TRANSP
Calculations during HHFW Pulses
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CQL3D Suggests =40% of HHFW Power Ultimately Coupled to
Plasma Core

K,=-13m'. Neutron Production Comparlson
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TORIC/TRANSP HHFW Power Deposition Results for Heating

of NBl-Induced H-mode Plasma, k j=-13m-!
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TRANSP with TORIC has been used to Estimate HHFW
Heating

e The current implementation of TORIC into TRANSP,
although not fully consistent for fast ions, provides revealing
Information about the time and profile evolution of the HHFW
power absorbed by plasma species

« TRANSP analysis has been complemented with single time
point CQL3D calculation to determine the ultimate HHFW
power coupling based on neutron production

 More work needed to continue validating modeling for
HHFW heating in NSTX plasmas

T13.00002: G. Taylor, Advances in High-Harmonics Physics in NSTX

Work supported by US DOE contract no. DE-AC02-09CH11466
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HHFW Progress during 2009 Campaign

T13.00002: G. Taylor, Advances in High-Harmonics Physics in NSTX

Double End-Fed Upgrade
Installed and Commissioned

Original RF Feeds
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“* Added for 2009

Previous Ground Run Campaign

Achieved 2.7 MW for 300 ms
resulting in T, > 6.0 keV
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HHFW Power Shifted from Electrons to Fast lons during NBI

Power channeled away Q,: Power at the antenna
from electrons to fast ions Q.: Power to the electrons
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Surface FW Propagation Supports Surface Loss at Lower k,

Propagating k, vs. density at antenna B Angle of ray to B vs. density
100 I I 1 1 I T I
B = 2.82 kG at antenna 10
B, = 4.5 kG
g0 | B¢ ) 0.8} -
Tana
('Vgr) 0.6 1
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\ [
g” 04F 14 m—1 (],"‘"200—"'_
0.2 1
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Onset density is oc B*k%/o

* Propagation is very close to wall at k, = 8 m, on wall at k, =3 m-* J.C.Hosea
* Losses in surface should be higher for lower k;,

* Propagation angle relative to B much less than for lower harmonic case

* Increasing B should move onset farther from antenna, increasing heating
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TORIC VERIFICATION
Compare to codes AORSA and GENRAY

3
GENRAY
' TORIC
= T - TORIC
% . "..Aotrapping)
z I\l
s AORSA
= | (no trapping)
AORSA
0 el P )
0 1
P

AORSA and TORIC simulations, with and without

trapping, and GENRAY, with trapping, of the

HHFW-CD for
No = 12. «C.K. Phillips, Nucl. Fusion 49 (2009) 075015
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NSTX HHFW Heating System
Fixed frequency 30 MHz, variable |k,| = 3, 8, 13, 14 m-1

e System parameters:

The double-peak k,=(14,18)m-! spectrum
will be referred to as simply k,=14m-.

— 12 antenna straps, six sources, decoupling loops, phase shifters,
and stubs

‘./'R—'\‘l
— Digital control of powerand phase ¢ |
— Automated matching calculation ., \
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HHFW during NBI Driven H-mode Plasma

W...s and neutron ( S,) changes are small and reproducible,
but appear related to edge effects
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NBI into HHFW Pre-heated Plasma
Three NBI Pulses

NBI + HHFW k,=14 m"? NBI only
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Neutrons (S,) Double and W4 Increases

HHFW starts before H-mode onset: three NBI pulses
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HHFW Increases Core T, Compared to NBl-only

Overlay of HHFW+NBI (solid) and NBI (dash) at 0.193 and 0.293 s
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