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Introduction & motivation IPP

= EBWSs — Electron Bernstein waves

+ The only waves in the electron cyclotron (EC) range
that can propagate in overdense plasmas (wp.>>£2,)

+ Must be excited by O/X-modes
¢ Strong interaction with the plasma (electrostatic)

» Potential goals — stabilization, profile shaping
+ Off-axis, localized current drive

= How to optimize and control?
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Simulation setup IPP

» AMR (Antenna, Mode-conversion, Ray-tracing) + LUKE
(3D Fokker-Planck) codes
+ AMR calculates optimum aiming and ray trajectories
¢ LUKE calculates guasi-linear damping and current

= O-X-EBW scheme
+ Frequency and antenna vertical position can be chosen
* N7 N, determined = 2 +ginjections possible

= Target plasma

¢ NSTX L-mode, B;=0.5T, n,=2.6x10%° m3, T,,=2.9 keV, [,=0.6 MA
(#123435)

¢ NSTX H-mode, B,=0.5 T, n,=3.9x101° m3, T_,=1.4 keV, I,=1 MA
(#130607)

¢ NHTX TRANSP scenario , B,=2 T, n,=2x10%° m=3, T _,=5.7 keV,
1,=3.5 MA
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EBW CD efficient across a wide range of parameters
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EBW CD efficient across a wide range of parameters
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Deposition possible at any radius
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CD efficiency similar in H-mode IPP
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Driven current decreasing towards the edge
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CD efficiency £ high at any radius
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Collisional losses critical in H-mode IPP

» Losses due to strong EBW collisional damping were
predicted and observed experimentally [S.J. Diem et al.,
Phys. Rev. Lett. 103, 015002 (2009); Nucl. Fus. 49, 095027
(2009)]

+ Much larger effect in H-modes
+ Can be mitigated by reducing the edge density (e-i collisionality)
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Collisional losses — mitigation possible IPP
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NHTX EBW CD similar to NSTX
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Collisional losses not severe for NHTX IPP
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= Collisional losses also predicted, although for the lower
frequencies only

= Similar edge density decrease can completely suppress
the collisional losses
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Summary & conclusions IPP

= EBW heating & current drive investigated with
AMR + LUKE codes

¢ Large number of different cases examined
+ Detailed aspects need to be analyzed
= CD efficiency £~0.5 can be reached at any radius

= Collisional losses might be critical
+ Present theory should be appropriate

¢ Particularly dangerous for NSTX H-mode, NHTX lower
frequencies
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