

Supported by

Modeling of Balmer series deuterium spectra with the Cretin code for diagnosing inner divertor re-attachment threshold in NSTX discharges with lithium coatings

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois** U Maryland **U** Rochester **U** Washington **U Wisconsin**

Filippo Scotti, PPPL V. A. Soukhanovskii, H. A. Scott LLNL

APS-DPP Conference 2009 Atlanta, GA

Culham Sci Ctr **U St. Andrews** York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep **U** Quebec

Abstract

Application of evaporated lithium coatings on graphite divertor tiles in NSTX led to a reduction of divertor recycling.

The inner divertor electron density and recombination rate were also drastically reduced, suggesting that the normally detached inner divertor re-attached in many lithium-assisted ELM-free H-mode discharges.

This observation was based on the divertor brightness profiles of Stark-broadened ultraviolet spectral lines from the Balmer series n = 2-7...12 transitions.

To understand the divertor transport regimes with reduced recycling and the density thresholds for both the inner divertor detachment and X-point MARFE formation, we are developing a simulation of the NSTX divertor spectra in a realistic viewing geometry using the Cretin code. The non-local thermodynamic equilibrium radiation transport code Cretin uses a 1-D plasma model with neutral diffusion and line shape calculations based on the quasi-static ion microfield approximation and a binary electron impact collision model.

*Work supported by the U.S. DOE under Contracts DE-AC52- 07NA27344 and DE-AC02-09CH11466.

- Introduction: NSTX divertor regimes strongly modified with Lithium deposition.
- SOL Five Point Model was used to simulate inner divertor regimes with reduced recycling due to Li coatings:
 - Increase in $T_{\rm e}$ and reduction in $n_{\rm e}$ at the target
 - Suggests re-attachment of the inner leg.
- NLTE radiation transport code CRETIN was used to simulate Balmer series deuterium spectra in NSTX inner divertor.
- Stark broadening from n=10 Balmer line was used to estimate n_e in the inner divertor based on:
 - Quasi-static ion microfield approximation
 - Binary electron impact collision model.
- Post Li inner divertor plasmas show reduced recombination, higher T_e and reduced n_e , consistent in both fluid and spectroscopic analysis.

Divertor in STs and NSTX

- Spherical Tokamak (ST) Divertor Geometric Features:
 - small surface to volume ratio and plasma wetted area
 - short connection length
 - strong inner/outer heat flux asymmetry
- Achievement of dissipative regimes (radiative/detached) is challenging BUT
- Potential CTF application: heat/particle fluxes potentially comparable to reactor

• NSTX:

- Symmetric upper and lower divertor with graphite tiles
- Open geometry: flexibility in plasma shaping
- No active pumping: secular core density rise
- Outer divertor: generally attached, high gas puffing to partially detach
- Inner divertor detaches early in the discharge (n_{e-core} >2-3·10¹⁹ m⁻³)

Lithium as PFC in NSTX

- Lithium used on NSTX as a PFC: pellets injection or evaporative deposition on the divertor plates. Next step in FY2010: Liquid Lithium Divertor module.
- Lithium capability of pumping hydrogen offers a potential solution for density control.
- Performance improvements in reduced recycling regimes with Li deposition:
 - ELMs suppression,
 - improvement of energy confinement and plasma performance,
 - higher pedestal T_e and T_i (flatter T profile)

Research Motivation: Experimental Observation of Inner Divertor Re-attachment After Li Deposition

- The reduced recycling strongly modifies the divertor plasma:
 - Reduction/disappearing of high-n Balmer lines
 - Reduced Stark broadening of Balmer lines
 - Reduced neutral pressure
- This suggests that recombination is strongly reduced and inner divertor leg re-attaches in Li-assisted discharges.
- Fluid and spectroscopic modeling can be useful to understand the physics of these divertor regimes.

NSTX Reference Discharges

() NSTX

Lithium Coating Increases Discharge Duration, Reduces Recycling and Suppresses ELMs

(III) NSTX

SOL/Divertor Modeling

- SOL plasma transport can be described by the Braginskii equations.
- A simpler set of equations can be used to describe the transport parallel to the magnetic field.
- Continuity Equation

 $\frac{\partial(nv)}{\partial x} = n \left(n_n \langle \sigma v \rangle_i - n \langle \sigma v \rangle_{rec} \right) + S_{\perp}$

Momentum Equation

 $\frac{\partial (mnv^2 + 2 nT)}{\partial x} = -mnv (n_n \langle \sigma v \rangle_{cx+el} + n \langle \sigma v \rangle_{rec})$

Power Balance Equation

$$\frac{\partial}{\partial x}\left(-\kappa_0 T^{\frac{5}{2}} + \frac{1}{2}mnv^3 + 5\,nT\,v\right) = -n^2 f_Z L_Z - \frac{3}{2}Tnn_n \langle \sigma v \rangle_{cx+el} - nE_{ion} \langle \sigma v \rangle_i + Q_\perp$$

Five point model of the SOL plasma

- Simplified 2-point/1-D models useful to understand divertor detachment.
- In this work a five point model based on [R. Goswami, *Phys. Plasmas*, **8**,3 (2001).], was used.
- Simplified continuity, momentum and power equations are solved for the electrons in five different regions from the midplane to the divertor target.
- Radiation, ionization, momentum loss and volume recombination effects are included in the model assuming constant rates.
- Analytical solution in the five regions provides a pseudo 1-D profile of plasma parameters, n, T, v and pressure.

Five point model of the SOL plasma

• Region 1: volumetric SOL heat Q_{\perp} and particle sources S_{\perp} , from midplane (x=0) to X-point (x=x_x).

$$\frac{d}{dx}(nv) = S_{\perp}, \qquad \frac{dp}{dx} = 0, \qquad \frac{d}{dx}\left(\kappa_0 T^{\frac{5}{2}} \frac{dT}{dx}\right) = -Q_{\perp}$$

 Region 2: Conduction region, until start of energy loss zone (x=x_L,T(x_L)=10eV).

$$\frac{d}{dx}(nv) = 0, \qquad \frac{dp}{dx} = 0, \qquad \frac{d}{dx}\left(\kappa_0 T^{\frac{5}{2}} \frac{dT}{dx}\right) = 0$$

• Region 3: Radiation front region (max. C radiation eff.) until start of the neutral zone ($x=x_c$, T(x_c)=4eV).

$$\frac{d}{dx}(nv) = 0, \qquad \frac{dp}{dx} = 0, \qquad \frac{d}{dx}\left(\kappa_0 T^{\frac{5}{2}} \frac{dT}{dx}\right) = L$$

 Region 4: Ionization front region (most neutrals are ionized) until onset of recombination region (x=x_R,T(x_R)=1.6eV).

$$\frac{d}{dx}(nv) = \Gamma_0 \delta(x - x_C), \qquad \frac{dp}{dx} = -m_i v_x nv, \qquad \frac{d}{dx} \left(\kappa_0 T^{\frac{5}{2}} \frac{dT}{dx}\right) = 0$$

• Region 5: Recombination front region (recombination exceeds ionization), until divertor plate.

$$\frac{d}{dx}(nv) = -R, \qquad \frac{dp}{dx} = -m_i v_x nv, \qquad \frac{d}{dx} \left(\kappa_0 T^{\frac{5}{2}} \frac{dT}{dx}\right) = 0$$

Modeling Reduced Recycling in Lithium-assisted Discharges

- Volumetric heat source Q_{\perp} obtained from estimates of the power to the SOL
- Ionization fluxes to the center stack Langmuir probes were used to estimate the scaling of the volumetric particle source $S_{\rm L}$
- Reduced recycling is modeled decreasing the amplification factor Γ of the ionization flux in the divertor region due to the reduced neutral pressure
- The charge exchange frequencies v are also modified accordingly.
- Different simulation scenarios:

- In Scenario-1 $f_{RAD} = \frac{L \cdot \delta_L}{q_{\parallel}}$ is kept constant for Pre/Post Li discharges - In Scenario-2 f_{RAD} is increased for Pre-Li discharges and

decreased for Post-Li discharges

Five Point Model: 1st Scenario

	High δ-κ,	High δ -κ,	Low δ-κ,	Low δ-κ,
	Pre-Li	Post-Li	Pre-Li	Post-Li
Q⊥	3.28	3.28	2.8	2.1
(MWm ⁻³)				
S⊥	2.5	1.2	1.8	0.8
(10 ²³ s ⁻¹ m ⁻³)				
Γ ₀	20	3.2	1.1	0.05
(10 ²³ s ⁻¹ m ⁻²)				
V ₀	4	1.33	0.26	0.026
(10 ⁵ S ⁻¹)				
R	1	1*	1	1*
(10 ²³ s ⁻¹ m ⁻³)				

- Midplane-target connection length L=13m, Xpoint-Target L_x =4m
- Radiated power fraction was kept constant in the 4 different simulations.
- *In Lithium discharges the higher $\rm T_e$ at the target places the divertor in a regime of low radiation and no recombination.

Simulation Results (1st Scenario) Re-attachment of Inner Divertor in Lithium Discharges

() NSTX

Five Point Model: 2nd Scenario Varying f_{RAD}

	High δ-κ,	High δ -κ,	Low δ-κ,	Low δ-κ,
	Pre-Li	Post-Li	Pre-Li	Post-Li
Q⊥	3.28	3.28	2.8	2.1
(MWm ⁻³)				
S⊥	1.25	1.2	0.9	0.8
(10 ²³ s ⁻¹ m ⁻³)				
Γ ₀ (10 ²³ s ⁻¹ m ⁻²)	10	3.2	0.55	0.05
V ₀ (10 ⁵ S ⁻¹)	4	1.33	0.26	0.026
R (10 ²³ s ⁻¹ m ⁻³)	1	1*	1	1*

• A 5-10% increase in the radiated power for the pre lithium discharges allowed the accessibility of the detached regime for lower ionization fluxes (50% in this simulation).

- The recombining, low temperature region expands towards the X-point.
- A reduction of the radiated power fraction for the post Li case increases T_e at the divertor target (even 50% higher fluxes would still allow an attached solution).

Simulation Results (2nd Scenario) Te at Target Increases for Reduced f_{RAD}

MSTX

CRETIN Code: Atomic Model

• **CRETIN** is a non-local thermodynamic equilibrium (NLTE) radiation transport code, [H. A. Scott, *J. Quant. Spectrosc. and Radiat. Trasfer*, **71** (2001)].

• A simple Hydrogenic model for Deuterium (D) levels was used to generate the atomic structure.

-Principal quantum numbers up to n=30and orbital quantum numbers up to l=14were included.

-No molecular species/transitions are included.

• **CRETIN** can be run as postprocessor to external data (plasma parameters, e.g. n, T) or it can generate its own time-space dependent profiles.

-1-D steady state plasma models were used in this work.

CRETIN Code Reaction Rates

• **CRETIN** calculates rates for ionization, excitation and recombination (collisional and radiative) based on local parameters.

-The spatial coupling occurs through radiation transport.

-Atomic populations are then derived.

-Continuum and line radiation are treated separately and coupled to the atomic kinetics.

• Rates calculated by **CRETIN** based on an Hydrogenic model for Deuterium, show that for low Te (<1.5 eV) and high ne (>1e13cm-3), recombination dominates over ionization processes.

Recombination Processes in the Divertor Region

• Due to recombination processes high-n excited states are efficiently populated. Their relaxation results in the appearance of the high-n UV Balmer lines spectra.

• In high n_e low T_e plasmas, radiation trapping could modify the excited states level populations. Balmer series lines radiation can be assumed optically thin.

High-n Balmer transitions as plasma diagnostics

- Signature of recombination.
- For $T_e < 1.5 \text{ eV}$, T_e diagnostics:
 - -From the slope of the excited states population against the level energy (need assumptions of Saha-Boltzmann equilibrium).
 - -From the relative intensity of line and continuum background. (neglect molecular pseudo-continuum background).

-From the slope of photo-recombination continuum.

• Stark broadening of Balmer lines as an electron density diagnostics.

Stark Broadening and Line Shape Calculations

- Broadening mechanisms:
 - -Natural broadening (Lorentzian)
 - -Doppler broadening (Gaussian) \rightarrow Voigt Profile
 - -Stark broadening (Lorentzian)

- Stark effect generated by the action on the neutral emitter of the electric microfield created by the perturber particles at scales where quasi neutrality is not fulfilled.
- CRETIN includes a code for line shape calculations, TOTAL [Calisti, PRA 1990].
- TOTAL: line shapes from binary electron impact model and quasistatic ion microfield.
- Electrons: binary (one perturber /collision) and instantaneous impact approximations.
- Ion quasistatic approx: collisions as an almost constant perturbation. Requires line width much larger than typical fluctuation frequency of ion microfield.

Stark Broadening and Line Shape Calculations

- Stark broadening increases with n_e due to the higher microfields.
- High-n level transitions show larger broadening. More suitable as n_e diagnostics.
- In the present work, Deuterium UV Balmer series lines with n_{max} up to 15 were treated with **TOTAL** to take into account for Stark effect and Doppler broadening.
- The Gaussian instrumental response was convolved with the line shape generated by **TOTAL** to obtain the final spectra.

CRETIN Simulation

- Data were acquired by the divertor spectrometer VIPS:
 - Viewing chord looking at the inner divertor
 - Instrumental function 1.1 A (1.2 A after convolution with 2eV ions).
- n_e was estimated from Balmer line Stark broadening from n=10.
- 1D CRETIN simulations were used to reproduce spectroscopic data.
- Simulated spectra were scaled by a constant factor in order to reproduce the detector View. Balmer 10 and Balmer 6 FWHM

1-D CRETIN Simulation

High elongation/ triangularity

ne~5±0.5e20m-3 from H10 Stark Broadening Te~1.1 eV ne=1.1±0.2e20m-3 from H6 Stark Broadening Example spectrum for Te=5 eV is shown in red

1-D CRETIN Simulation

Low elongation/ triangularity

ne~1.3±0.2e20m-3 from H10 Stark Broadening Te~3 eV Ne~5±3e19m-3 from H6 Stark broadening Example spectrum for Te=7 eV is shown in red

Results Comparison

Discussion

- Five Point Model:
 - Helps to qualitatively explain the lower recycling regimes but
 - Constant rates are used for the atomic processes
 - Perpendicular transport effects are ignored in this treatment
 - Radiation losses are overestimated
- Sensitivity
 - H10 Stark broadening is only sensitive to high densities (n>1e14cm-3)
 - Higher-n transitions would be more convenient but intensity is too low (in attached case only H6 is available)
- Contamination issues:

- Carbon impurity lines make difficult excited state population evaluation especially in the lower density attached regimes.

- Molecular emission significantly modifies the continuum background