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Outline

A significant discrepancy of poloidal velocity from conventional
theoretical predictions is found in global neoclassical drift-kinetic
simulations of magnetic confinement fusion devices. The difference is
identified to be due to the presence of large ion orbits. In the case of a
large-aspect ratio tokamak configuration with steep toroidal flow
profiles, a novel theoretical model which describes this nonlocal effect is
presented and shown to explain the simulation results. The dominant
nonlocal mechanisms captured by the model are associated with ion
parallel flow modification due to the steep toroidal flow and radial
electric field profiles. We compare simulation results with theoretical
estimates based on the new model using profiles relevant for the
National Spherical Torus Experiment (NSTX). The carbon poloidal
velocity observed in the simulation is in good agreement with the
neoclassical theory modified by the newly identified nonlocal effects.



Unlike-particle collision operator

e The linearised unlike-particle collision operator for species a colliding
with species b is

Cav[Foas 0.fs] + Cap[0 far Fon) = Cy (8fa) + Co (6 f)
e The field-particle operator is
Cfépwfb) — (Hab(v)éNab + Rab(v>2},‘5pab + Qab(f(J)(sEab)

— particle number, momentum and energy gained by species a field
particles must equal that lost by species b test particles

SN, — — / FvCIP(5 ),
5Pab — —/d3vmva£P(5fb),

OF —/d3v(m502/2)0£]3(5fb).



— linearised operator must have the correct null space
Cap (0fa) +Ca"(0fs) =0

when 0 f, and 0 f; are perturbations of Maxwellians with the same
flow velocity and the same temperature perturbation:

O;P(ma?}”Foa) + Oﬂp(mb?}”ﬂ)b) = 0,
CLE (mav* Foy) + CLE (myv* Fy) = 0.

e The conservation properties may be written as follows
/ d*vCL (5 ) = SN,
/d%mwOﬂP@fb) — 5Paba

/ Polmp? /2CEP(5,) = SE.,



e With appropriate choices of multiplying factors, the functions R
and QO are

CLE (mgv) Fiq)
J dPvmqv G (mav) Foa)
CLE (mav* Fy,)
[ dBo(mav?/2)CLE (mv? Fy,)
e Computing the Rosenbluth potentials gives

3y

Rab(U)UHFOa =

Qab(v>F0a —

Rafv) = Lol ma/ma) g, ()
Que) = 51+ mufma) ;" s — ) D),

Hab(v) = 1— Qab(v).
where ¢(y) = 2/y/7 [ e Vitdt and y, = v*/vi = my?/(2T).



e The equations for the two marker weights become

. 1—]? DFOS _
w = . ( ‘|‘ZO 5fb>77(ww5)a

. 1—]? DFOS ( —)
p . Dit Mp — DPs)-

e The local shifted Maxwellian background distribution function is

expressed as follows

FOS = FOS(”S) T7 UH)

= Ny (27:—;)3/2 exp [—% ((UH — UH)2/2 + ,MB)]

— The difference in species’ temperature T'(r) and parallel flow U (r)
profiles is captured by initial 0 fs(t = 0)
FOS(”S) Tsa U||3)
Ofs(t=0) =
St =0) Fos(ns, T, Uy)

where Ts(r) and U)js(r) are experimental profiles for species s.
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e Time evolution of the radial electric field and radial guiding center
currents Z.1', for both deuterium and carbon
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— Ambipolar radial electric field reaches steady state when the total
radial guiding center particle current » | Z,I's = 0 vanishes, while
individual particle fluxes I'y stay finite.



Unlike-particle collision operator (residual errors)

e Residual errors will depend on the number of markers used in the
simulation. Following the procedure developed by Satake, we rewrite
the field-particle operator in the following form

Ci, (6 fy) = (Hap(0)ON + Rap(v)v) 6P + Qup(v)SE)
— corrections 0V, 0 P and 0 F are found by solving the equation

Ha  Rav| Qb oN
Z(l — Dk HabUH 7QabUH QabUH oP
k H pv° RabUQUH Q pV° . )
0N
= — 5Pab/ma
25Eab/ma

— enforces precise conservation of number, momentum and energy
locally. Residual error is at the rounding-error level for both
deuterium and carbon, independent of the number of markers in
the simulation.



e The blue and the red crosses (for deuterium and carbon) show the
errors due to application of (Ruy(v)v) 0 Py + Qap(v)0 Eyp) operator:;

e Application of the complete operator

(Hap(v)0Nap + Rap(v)v) |0 Pay + Qap(v)6 Eyp) (squares);

e Application of the new operator

(Hap(v)ON 4+ Rap(v)v) 6 P + Qup(v)d E) (circles).
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Neoclassical Poloidal Rotation

e The reason why the nonlocal effects are important for the poloidal
flow U, may be understood by constructing an appropriate
combination of parallel U} and perpendicular U velocities to obtain

Bp BP
Up — U”§+ UJ_ . gp,

where U | 1is the drift perpendicular to the magnetic field
T ~ OlnnT  Ze
— b ——F,.].
ZeB ( or T )

U,

e U can be evaluated as a sum of a local neoclassical result Uy and
some unknown nonlocal correction Al

U = U+ AU,

IT OlnnTU-k Z
UH(): C ( nn n eEr |

or T



Here Ze and m are the 1on charge and mass, B, and B, are poloidal
and toroidal parts of the magnetic field, I = RBy, ¢’ = 0y /0r, with
1 being the poloidal magnetic flux. k is collisionality dependent
parameter. The toroidal rotation frequency is w = U;B/1.

e The resulting ion poloidal velocity is

B
Up — Upo + —pAUH,

B, le or
c

Uy = —k .
WoR ZeBy' Or

e Most of the terms cancel, leading to the result that the standard
neoclassical part of the poloidal flow U, only depends on the radial
temperature gradient. While the nonlocal Al correction might be
small, its effect on the poloidal flow U, due to a cancellation, might
be significant, especially in the case of a strong gradient in the
toroidal rotation w.
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Neoclassical Poloidal Rotation (shear in the toroidal flow)

e We start with the distribution function f(«, €, i) in the form
f = (m/2xT)"PN(¢*) exp (—ae — bu) .
— guiding center canonical angular momentum ¢* = ¢ — Iv/;
—energy € = (vﬁ +v%)/2 + Zed()) /m and magnetic moment

1= v7 /2B with a and b being constants;
—radial electric field E, = —0®(y)/0r.

e By substituting N (¢*) = Nyexp(—BY* — v1p*?) and equating the
magnetic surface average of the coefficients in front of vﬁ and v5 we
obtain

3/2
J = (%%) Nyexp <—5¢ —yp* —a -
m

exp (_ﬁ (v — Uy + vﬂ) .




— The temperature and the parallel flow are defined to be

m 2vI*mect,

?:CH_ 7Z%e? B,
cl'l

Uy = -8+ 279),

with () being the magnetic surface average.

e Taking the density moment and using v = (Ze/2cT)0w /0 we
obtain U = Uy + AU, where U is the local prediction with
JT'/0r = 0. The nonlocal contribution is calculated to be

Ze[<[2>8lnnT8w
m2c) Q2 O oY

[on cyclotron frequency is Q2 = ZeB/mc.

AUy, = —

e The mechanism underlying the nonlocal effect is generation of extra
ion parallel velocity near steep toroidal flow gradient. As a result,
extra poloidal velocity is also produced via the trivial relation

Aupl — (Bp/B>AUH1



Neoclassical Poloidal Rotation

(squeezing in the radial electric field)

e We utilize a quasi-equilibrium function of constants ot the particle
motion. We start with f = exp (a(¢¥*) — B(¢*)e). Then the
functions a(¢*) and [(1*) can be identified from the requirement
that f must reduce to a shifted Maxwellian

- 3/2
fam = n(¢) (27TT )

exp < (D) (o — Uj () + Ui])

in the limit of zero orbit width 9* — 1 — 0. This gives
3/2
m Zed (1)
= In + Inn(y),
<2wT<w>) T(

m

T()



e The parallel flow will be determined by maximizing an entropy
expression defined by

_L 3 nf—In
S_nw)/d”fsm(l f=n fom),

where according to the small width approximation

Inf —In fon = a(¢’) —a(y) = [6(47) = B(Y)] €
+ B(v) (_UHUII + U\Q\/Q) -

The equation 0S/0U|| = 0 gives a nonlocal correction to U)jg. The
term proportional to O, /Or is

Zel? OlnnT 0*®
AUHQZ_ngng Oy O

e As a result of ion orbit squeezing in the electric field, an extra parallel
velocity Aldj and thus an extra poloidal velocity

AUy = (B,/B)AU|» are generated.
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Simulation of Neoclassical Poloidal Rotation in NSTX

e On the left is the density and toroidal angular frequency radial
profiles for NSTX shot #129059 at t = 0.695s. Toroidal angular
frequency as calculated by the TRANSP code is assumed to be the
same (mass averaged) for both species. OnT' /00w /Oy is strong
near r/a ~ 0.2 — 0.7, where the first nonlocal effect is expected to be
the most important.

e On the right is the sumulation results for the carbon poloidal flow
and the radial electric field versus minor radius for this NSTX shot.
In the upper panel, the dashed black curve is from the simulation,
while the red curve is a local neoclassical estimate U]% from the

NCLASS code.
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e In order to understand the role of nonlocal effects, we write down the

system of four equations for the poloidal velocity U} and the poloidal
heat flux @) for species s = C, D

(Ef Eg) (Ug — Bp/BAL{S)
15 fs @,

s < zﬁb —zbfg> U" — B,/ BAU] |
—75 15 Q"

b=C,D
The superscripts ‘C” and "D’ stand for carbon and deuterium,
respectively. Here, U® = Vi,B/(B*) + U} and

@S = Vo, B/(B?) + @, 1t is clear that the carbon poloidal velocity
U, will be affected by the nonlocal effects from both the carbon

(AM‘(‘}) and deuterium (AL{,? ) species.



e 'To simplify the analysis, we notice that the finite orbit effect on the
radial electric field primarily comes from the prevailing deuterium
ions. Then, rewriting the radial force balance for carbon yields

AUC ~ % (AU~ aup) .

e Having added analytical expressions for the new nonlocal effects
AZ/{pC = AZ/{]ﬁ + AZ/{]% together with the local neoclassical estimate
from the NCLASS code Up% we obtain the green curve which agrees
better with the simulation result than the original local prediction.



Conclusions

We have performed a neoclassical drift-kinetic particle simulation of the
poloidal velocity in a two ion-species system. New nonlocal effects due
to shear in the toroidal flow and squeezing in the radial electric field are
observed. An analytical model based on these effects has been proposed
to explain the simulation results in a large aspect-ratio plasma with a
steep toroidal flow profile. The newly discovered nonlocal effects are
shown to fairly well account for the discrepancy between the simulation
result for carbon poloidal flow in NSTX and the prediction from the
local theory. Future work includes comparisons of simulation with
measurement results for the carbon poloidal rotation in tokamak
experiments. Our new model might offer insight into the role the
nonlocal effects have on the poloidal velocity in realistic magnetic fusion
devices.
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