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Outline

A significant discrepancy of poloidal velocity from conventional
theoretical predictions is found in global neoclassical drift-kinetic
simulations of magnetic confinement fusion devices. The difference is
identified to be due to the presence of large ion orbits. In the case of a
large-aspect ratio tokamak configuration with steep toroidal flow
profiles, a novel theoretical model which describes this nonlocal effect is
presented and shown to explain the simulation results. The dominant
nonlocal mechanisms captured by the model are associated with ion
parallel flow modification due to the steep toroidal flow and radial
electric field profiles. We compare simulation results with theoretical
estimates based on the new model using profiles relevant for the
National Spherical Torus Experiment (NSTX). The carbon poloidal
velocity observed in the simulation is in good agreement with the
neoclassical theory modified by the newly identified nonlocal effects.



Unlike-particle collision operator

• The linearised unlike-particle collision operator for species a colliding
with species b is

Cab[F0a, δfb] + Cab[δfa, F0b] = CTP
ab (δfa) + CFP

ab (δfb)

• The field-particle operator is

CFP
ab (δfb) = (Hab(v)δNab + Rab(v)v||δPab + Qab(v)δEab)

– particle number, momentum and energy gained by species a field
particles must equal that lost by species b test particles

δNab = −
∫
d3vCTP

ba (δfb),

δPab = −
∫
d3vmbv||C

TP
ba (δfb),

δEab = −
∫
d3v(mbv

2/2)CTP
ba (δfb).



– linearised operator must have the correct null space

CTP
ab (δfa) + CFP

ab (δfb) = 0

when δfa and δfb are perturbations of Maxwellians with the same
flow velocity and the same temperature perturbation:

CTP
ab (mav||F0a) + CFP

ab (mbv||F0b) = 0,

CTP
ab (mav

2F0a) + CFP
ab (mbv

2F0b) = 0.

• The conservation properties may be written as follows∫
d3vCFP

ab (δfb) = δNab,
∫
d3vmbv||C

FP
ab (δfb) = δPab,

∫
d3v(mbv

2/2)CFP
ab (δfb) = δEab.



• With appropriate choices of multiplying factors, the functions Rab

and Qab are

Rab(v)v||F0a =
CTP
ab (mav||F0a)∫

d3vmav||CTP
ab (mav||F0a)

,

Qab(v)F0a =
CTP
ab (mav

2F0a)∫
d3v(mav2/2)CTP

ab (mav2F0a)
.

• Computing the Rosenbluth potentials gives

Rab(v) =
3
√
π

4naT
(1 +mb/ma)

3/2y
−3/2
b φ(yb),

Qab(v) =

√
π

2naT
(1 +mb/ma)

3/2y
−1/2
b (ma/mb − d/dyb)φ(yb),

Hab(v) = 1 −Qab(v).

where φ(y) = 2/
√
π
∫ y

0 e
−t√tdt and yb = v2/v2

b = mbv
2/(2T ).



• The equations for the two marker weights become

ẇ =
1 − p

F0s

(
−DF0s

Dt
+
∑

b

CFP
sb (δfb)

)
− η(w − ws),

ṗ =
1 − p

F0s

(
−DF0s

Dt

)
− η(p− ps).

• The local shifted Maxwellian background distribution function is
expressed as follows

F0s ≡ F0s(ns, T, U||)

= ns

( ms

2πT

)3/2

exp [−ms

T

(
(v|| − U||)

2/2 + µB
)
].

– The difference in species’ temperature T (r) and parallel flow U(r)
profiles is captured by initial δfs(t = 0)

δfs(t = 0) =
F0s(ns, Ts, U||s)

F0s(ns, T, U||)
− 1,

where Ts(r) and U||s(r) are experimental profiles for species s.



• Time evolution of the radial electric field and radial guiding center
currents ZsΓs for both deuterium and carbon
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– Ambipolar radial electric field reaches steady state when the total
radial guiding center particle current

∑
sZsΓs = 0 vanishes, while

individual particle fluxes Γs stay finite.



Unlike-particle collision operator (residual errors)

• Residual errors will depend on the number of markers used in the
simulation. Following the procedure developed by Satake, we rewrite
the field-particle operator in the following form

CFP
ab (δfb) = (Hab(v)δN + Rab(v)v||δP + Qab(v)δE)

– corrections δN , δP and δE are found by solving the equation

∑

k

(1 − pk)




Hab Rabv‖ Qab

Habv‖ Rabv
2
‖ Qabv‖

Habv
2 Rabv

2v‖ Qabv
2




k



δN
δP
δE




= −




δNab

δPab/ma

2δEab/ma




– enforces precise conservation of number, momentum and energy
locally. Residual error is at the rounding-error level for both
deuterium and carbon, independent of the number of markers in
the simulation.



• The blue and the red crosses (for deuterium and carbon) show the
errors due to application of (Rab(v)v||δPab + Qab(v)δEab) operator;

• Application of the complete operator
(Hab(v)δNab + Rab(v)v||δPab + Qab(v)δEab) (squares);

• Application of the new operator
(Hab(v)δN + Rab(v)v||δP + Qab(v)δE) (circles).
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Neoclassical Poloidal Rotation

• The reason why the nonlocal effects are important for the poloidal
flow Up may be understood by constructing an appropriate
combination of parallel U|| and perpendicular U⊥ velocities to obtain

Up = U||
Bp

B
+ U⊥ · Bp

Bp
,

where U⊥ is the drift perpendicular to the magnetic field

U⊥ =
cT

ZeB
b̂ ×

(
∂ lnnT

∂r
− Ze

T
Er

)
.

• U|| can be evaluated as a sum of a local neoclassical result U||0 and
some unknown nonlocal correction ∆U||

U|| = U||0 + ∆U||,

U||0 =
cIT

ZeBψ′

(
−∂ lnnT (1−k)

∂r
+
Ze

T
Er

)
.



Here Ze and m are the ion charge and mass, Bp and Bt are poloidal
and toroidal parts of the magnetic field, I = RBt, ψ

′ = ∂ψ/∂r, with
ψ being the poloidal magnetic flux. k is collisionality dependent
parameter. The toroidal rotation frequency is ω = U||B/I .

• The resulting ion poloidal velocity is

Up = Up0 +
Bp

B
∆U||,

Up0 =
Bp

B
k

Ic

ZeBψ′
∂T

∂r
.

• Most of the terms cancel, leading to the result that the standard
neoclassical part of the poloidal flow Up0 only depends on the radial
temperature gradient. While the nonlocal ∆U|| correction might be
small, its effect on the poloidal flow Up, due to a cancellation, might
be significant, especially in the case of a strong gradient in the
toroidal rotation ω.
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Neoclassical Poloidal Rotation (shear in the toroidal flow)

• We start with the distribution function f (x, ǫ, µ) in the form

f = (m/2πT )3/2N (ψ⋆) exp (−aǫ− bµ) .

– guiding center canonical angular momentum ψ⋆ = ψ − Iv||/Ω;

– energy ǫ = (v2
|| + v2

⊥)/2 + ZeΦ(ψ)/m and magnetic moment

µ = v2
⊥/2B with a and b being constants;

– radial electric field Er = −∂Φ(ψ)/∂r.

• By substituting N (ψ⋆) = N0 exp(−βψ⋆ − γψ⋆2) and equating the
magnetic surface average of the coefficients in front of v2

|| and v2
⊥ we

obtain

f =
( m

2πT

)3/2

N0 exp

(
−βψ − γψ2 − a

ZeΦ

m
+
m

2T
U 2
||

)

exp
(
−m

2T

[
(v|| − U||)

2 + v2
⊥
])
.



– The temperature and the parallel flow are defined to be

m

T
= a +

2γI2m2c2

Z2e2
〈B−2〉,

U|| =
cTI

ZeB
(β + 2γψ),

with 〈〉 being the magnetic surface average.

• Taking the density moment and using γ = (Ze/2cT )∂ω/∂ψ we
obtain U|| = U||0 + ∆U||1, where U||0 is the local prediction with
∂T/∂r = 0. The nonlocal contribution is calculated to be

∆U||1 = − ZeI

m2cΩ
〈I

2

Ω2
〉∂ lnnT

∂ψ

∂ω

∂ψ
.

Ion cyclotron frequency is Ω = ZeB/mc.

• The mechanism underlying the nonlocal effect is generation of extra
ion parallel velocity near steep toroidal flow gradient. As a result,
extra poloidal velocity is also produced via the trivial relation
∆Up1 = (Bp/B)∆U||1.



Neoclassical Poloidal Rotation

(squeezing in the radial electric field)

• We utilize a quasi-equilibrium function of constants of the particle
motion. We start with f = exp (α(ψ⋆) − β(ψ⋆)ǫ). Then the
functions α(ψ⋆) and β(ψ⋆) can be identified from the requirement
that f must reduce to a shifted Maxwellian

fsm = n(ψ)

(
m

2πT (ψ)

)3/2

exp

(
− m

2T (ψ)

[
(v|| − U||(ψ))2 + v2

⊥
])

in the limit of zero orbit width ψ⋆ − ψ → 0. This gives

α(ψ) = ln

(
m

2πT (ψ)

)3/2

+
ZeΦ(ψ)

T (ψ)
lnn(ψ),

β(ψ) =
m

T (ψ)
.



• The parallel flow will be determined by maximizing an entropy
expression defined by

S =
1

n(ψ)

∫
d3vfsm(ln f − ln fsm),

where according to the small width approximation

ln f − ln fsm = α(ψ⋆) − α(ψ) − [β(ψ⋆) − β(ψ)] ǫ

+ β(ψ)
(
−v||U|| + U 2

||/2
)
.

The equation ∂S/∂U|| = 0 gives a nonlocal correction to U||0. The
term proportional to ∂Er/∂r is

∆U||2 = −ZeI
3

m2Ω3
T
∂ lnnT

∂ψ

∂2Φ

∂ψ2
.

• As a result of ion orbit squeezing in the electric field, an extra parallel
velocity ∆U||2 and thus an extra poloidal velocity
∆Up2 = (Bp/B)∆U||2 are generated.
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Simulation of Neoclassical Poloidal Rotation in NSTX

• On the left is the density and toroidal angular frequency radial
profiles for NSTX shot #129059 at t = 0.695s. Toroidal angular
frequency as calculated by the TRANSP code is assumed to be the
same (mass averaged) for both species. ∂nT/∂ψ∂ω/∂ψ is strong
near r/a ∼ 0.2 − 0.7, where the first nonlocal effect is expected to be
the most important.

• On the right is the sumulation results for the carbon poloidal flow
and the radial electric field versus minor radius for this NSTX shot.
In the upper panel, the dashed black curve is from the simulation,
while the red curve is a local neoclassical estimate UC

p0 from the
NCLASS code.
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• In order to understand the role of nonlocal effects, we write down the
system of four equations for the poloidal velocity U s

p and the poloidal
heat flux Qs

p for species s = C,D
(
µ̂s1 µ̂

s
2

µ̂s2 µ̂
s
3

)(
U s
p − Bp/B∆U s

||
Qs
p

)

=
∑

b=C,D

(
lsb11 −lsb12

−lsb12 lsb22

)(
Ũ b −Bp/B∆U b

||
Q̃b

)
.

The superscripts ′C ′ and ′D′ stand for carbon and deuterium,
respectively. Here, Ũ s = V1sB/〈B2〉 + U s

p and

Q̃s = V2sB/〈B2〉 +Qs
p. It is clear that the carbon poloidal velocity

U s
p will be affected by the nonlocal effects from both the carbon

(∆UC
|| ) and deuterium (∆UD

|| ) species.



• To simplify the analysis, we notice that the finite orbit effect on the
radial electric field primarily comes from the prevailing deuterium
ions. Then, rewriting the radial force balance for carbon yields

∆UC
p ≈ Bp

B

(
∆UC

|| − ∆UD
||

)
.

• Having added analytical expressions for the new nonlocal effects
∆UC

p = ∆UC
p1 + ∆UC

p2 together with the local neoclassical estimate

from the NCLASS code UC
p0, we obtain the green curve which agrees

better with the simulation result than the original local prediction.



Conclusions

We have performed a neoclassical drift-kinetic particle simulation of the
poloidal velocity in a two ion-species system. New nonlocal effects due
to shear in the toroidal flow and squeezing in the radial electric field are
observed. An analytical model based on these effects has been proposed
to explain the simulation results in a large aspect-ratio plasma with a
steep toroidal flow profile. The newly discovered nonlocal effects are
shown to fairly well account for the discrepancy between the simulation
result for carbon poloidal flow in NSTX and the prediction from the
local theory. Future work includes comparisons of simulation with
measurement results for the carbon poloidal rotation in tokamak
experiments. Our new model might offer insight into the role the
nonlocal effects have on the poloidal velocity in realistic magnetic fusion
devices.
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