

SENSITIVITY OF TEARING MODE BETA LIMITS TO ROTATION AND CURRENT PROFILE

R.J. Buttery, C.D. Challis, S.P. Gerhard, R.J. La Haye, S.A. Sabbagh and DIII-D, JET and NSTX teams

# Schematic layout of top and bottom banners (about 5 ft wide)

... being professionally drafted...



## Abstract



Tearing mode beta limits depend on a complex balance between pressure gradient 'neoclassical' drives, small island threshold effects, external triggers and underlying classical tearing stability,  $\Delta$ '.

In this study, the threshold physics is probed by:

- deploying different types of *error fields* on NSTX & DIII-D to vary the plasma *rotation profile*
- different forms of *current and heating ramp-up* on JET to vary the *current profile*

Results suggest changes in the intrinsic tearing stability play a major role in governing beta limits, and can be affected by variations in the current profile or the rotation shear at the q=2 surface



### **Underlying Physics**

Tearing drives & sinks described by modified Rutherford Equation:



R

n=2 perturbed

current

n=1 perturbed

pressure

- Current profile governs basic 'intrinsic' tearing stability
- Rotation can enter through several mechanisms:
  - Shielding out trigger perturbation
  - Change intrinsic tearing stability
  - Small island effects e.g.  $a_{pol}$

#### Highest $\beta$ Limits May Be Governed by Pole in $\Delta'$ – Introducing dependency on current and flow profiles

- Calculations show Δ' rises as ideal β limit approached
  - Seedless 2/1 modes observed as <sup>β</sup><sub>N</sub> crosses ideal no-wall limit
    - Current profile governs baseline Δ' & gives means to raise thresholds



- Island stability may also be modified by flow shear:
  - Viscous coupling distorts island structure changing free energy
- Error fields can perturb flows in the plasma
  - Response to error fields may depend on plasma stability  $\leftarrow \beta_N, \Delta'$



Brennan et al, PP10, 1643]

# Role of Error Fields & Plasma Rotation

#### How do Error Fields Interact with Plasma?

DIII-D experiments show <u>resonant</u> error field can act through two mechanisms to drive modes in high  $\beta$  plasmas:



 → EFs can probe NTM physics
 → Measure error field response & correction requirements...

- Locked modes:
  - Influenced by proximity to
    - ideal kink beta limit?
    - classical tearing limit?
  - Role of rotation?
- Rotating modes:
  - EF perturbing classical or neoclassical stability?
    - Action through rotation or rotation shear?

# NSTX Studies Have Shown a Rotation Effect in Error Field Interaction & Impact on NTM $\beta$ limit

- n=3 braking showed 2/1 NTM thresholds rise with rotation
  - Consistent with rotation trends from beam mixing studies on DIII-D & JT-60U:





q=2 Alfvén Mach number,  $\Omega_{\phi} \tau_{A}$ 

- How is rotation acting on NTM stability?
- What are practical error field limits?

### NSTX Database Study Suggested Rotation Acts Through the Local Rotation Shear at the Island

- Gerhardt analysis<sup>1</sup> compared trends for different types of NTM trigger across NSTX 2007 campaign
  - no n=1 braking in this data set
- *Goal 2009: Controlled study of error field effect in constant conditions:* 
  - Decouple rotation roles further with n=1 and n=3 fields
  - Learn about error field interaction
- Achieved reproducible scans by tuning H mode:
  - shape, gas, lithium



### New NSTX Experiment: Ramp Error Fields to Make Mode

- Vary ratio n=1:n=3 fields shot to shot
- Typically ELMs are small (due to lithium)
- No clear NTM trigger in most shots
  - 'Seedless' must be  $\Delta$ ' triggered

#### Other shot details:

- Early strong heating for H mode
- MHD at 300ms when q=2 appears
- Reproducible conditions & front end to eliminate q profile changes shot-shot
  - From evaporating lithium each shot
- But note q relaxing towards q=1 (when bad MHD would occur)
  - (Role of  $q_{min}$ =1 with EF under investigation)





- Vacuum field is ~2.5G/kA (m=2 n=1 at q=2 surface)
- Including plasma response from other surfaces (IPEC) raises total field at q=2
- n=3: no similar formalism to compare size (as non-resonant)
  - Typical surface averaged |B| is a few Gauss
  - But may be best to compare relative magnitudes in terms of coil currents!
    - Gives better idea of relative field strengths



# New Experiments Perturbed β Limit with Wide Range of Resonant n=1 & Non-resonant n=3 Fields



#### Differences in CHERS q=2 and 2/1 mode rotation

- Mode forms locked while CHERS shows plasma rotating
  - Actual mode onset rotation is lower than CHERS
    - Coupling to ELMs?
  - Locked mode stops MHD fluid while plasma still flows





 $\Omega_{\phi 2/1}$  Hz

### Mode Forms at Lower $\beta_N$ when Locked

- Locked mode threshold is 0.5 lower in  $\beta_{N}$ 
  - May be partly confinement reduction
  - stripped out for rest of this analysis (J-KP analyzing locked mode physics<sup>1</sup>)
- Rotating mode shows no ۲ rotation dependence!
- y = 3.90 2E 05x4  $\beta_N$ 3 y = 3.42 - 3E - 06x2 Rotating 1 Locked 0 2000 4000 6000 8000 10000 0 12000

 $\Omega_{\phi q=2 \text{ CHERS}}$  Hz

- Generally below no-wall  $\beta_N$  limits
- But need to look at drives in local parameters & understand what we really varied
  - How does braking impact rotation and mode drives?

<sup>[1</sup>Poster: PP8.00051, Jong-Kyu Park]

### Braking Effect: n=1 & n=3 Contribute Similarly to Braking

- Both n=1 and n=3 brake plasma
- Best fit is combination of similar levels of n=1 and n=3 currents:
  - $\Omega_{\phi 21} = 7500 (2.26I_{n=1} + 2.52I_{n=3})$
  - Good correlation for braking:





Matches Fitzpatrick theory: Penetration at half natural rotation rate.

# Rotation Shear Much More Variable Over The Scan – provides opportunity to decouple from rotation trend

- Rotation shear more scattered than simple dependence on n=1 & n=3
  - Although both forms of braking reduce rotation shear – best fit:
    - $d\Omega_{\phi 21}/dR = -54000 (14.5I_{n=1} + 11I_{n=3})$
  - Can decouple rotation shear from rotation effects – which governs NTM?







#### Bootstrap Drive Measure of NTM Threshold Suggests Dependence Through Rotation Shear

- No measurable trend with rotation!
- Weak positive correlation with normalized rotation shear
  - Lowest thresholds at low rotation shear
  - Highest thresholds at high rotation shear
  - Best 'fit' is power law

*This correlation in the 'most noisy' parameters suggest physics is right:* 

- Rotation impact is through shear changing  $\Delta'$
- No correlation if fit  $\beta_N$  instead
- Fit vs rotation & rotation shear offers little improvement



#### **Conclusions on Rotation & Error Fields**

- NTM threshold dependence on rotation comes through flow shear impact at the rational surface
  - Confirms previous database study in controlled conditions
  - Correlations with rotation completely stripped out!
    - Suggests changes to inherent plasma stability at the tearing resonant surface play an important role in determining mode onset
- Threshold between rotating & locked mode regime at half natural plasma rotation
  - $-\beta$  limit for rotating modes reduced below this
  - Locked modes above this (à la Fitzpatrick)
- Locked mode cases exhibit confinement degradation before mode onset, and have a lower  $\beta_N$  limit
- Both n=1 resonant braking and n=3 non-resonant braking have similar effects on plasma and mode

# Role of the Current Profile

### JET Hybrid Plasma Sit Above β Limit of Other Devices: Other parameters coming into play – q profile?

- JET sits above DIII-D and JT-60U trends
  - JT-60U lower rotation  $\rightarrow$  lower  $\beta_N$
  - But DIII-D high rotation
- Possible collisionality role? <u>No</u>:
  - JET unstable at  $\diamond low v^*$
  - But stable at +high and  $\circ low v^*$
- Collisionality provides 'access condition' for NTM
  - Enables q profile modification
  - Can change  $\Delta'$
  - q profile is the parameter to test...



### **Difference in MHD Markers Indicates q Profile Change Correlating with NTM Stability Change**

Mode number spectrograms:



### Exploring q profile role in controlled scans

#### q profile varied with three techniques:

- current overshoot
  - J in 'outer third'
- I<sub>p</sub> ramp up rate & beam-on time
  - q<sub>min</sub> value
- → Impacts H factor

*These 'performance' shots skirted stability limit* 

Raise power to access 2/1 NTM...



# Discharges show a $\beta_N$ threshold for the mode & q profile dependence (1: $I_P$ overshoot scan)

### Vary I<sub>P</sub> overshoot

- No overshoot:
   Iate mode
   as beta rises?
- Modest overshoot:
   → prompt mode with ELM free high β<sub>N</sub> spike
- Strong overshoot:
  → No 2/1 mode
  - despite early high  $\beta_N$
  - → q profile effect on stability (red cf pink)

FYI: JET q profile evolves on timescale of seconds, once a strongly heated plasmas is established



JET: 75460, 75459, 75462

# Discharges show a $\beta_N$ threshold for the mode & q profile dependence (2: with increased power)

- No overshoot:  $\rightarrow$  mode sooner as  $\beta_N$  higher
- Modest overshoot:  $\rightarrow$  no change same  $\beta_N$  trajectory
- Strong overshoot:
   → Mode at previously stable β<sub>N</sub>, once q profile evolved:





#### **Possible Optimal Degree of Current Overshoot**



# Heating timing scan shows 'just right' degree of relaxation needed

JET: 77626,77629,77636,77633



#### **Conclusions on q Profile Role & Generally**

- JET shows increased stability to 2/1 NTM cf other devices
  - Possible origin in q profile dependence
- q profile is observed to play a major role in 2/1 NTM threshold
  - Varying heating timing or Ip overshoot impacts mode onset
  - Allowing plasma to relax (by waiting or lowering power) can lead to mode at lower  $\beta_N$
  - More 'advanced' q profiles (q<sub>min</sub><~2) are more unstable</li>
- It seems that a 'just right' degree of relaxation is needed to maintain stability

A common picture is emerging whereby 2/1 NTM thresholds are predominantly governed by changes in underlying tearing stability of the plasma, and that this can be influenced by manipulating current profile or flow shear, leading to *risks from error fields and low torque* and *opportunities through q and flow profile tuning*.

#### 'Minimal' $\Delta$ ' seeding model to explain observations







Richard Buttery<sup>1</sup>, Clive Challis<sup>2</sup>, Stefan Gerhardt<sup>3</sup>, Rob La Haye<sup>4</sup>, Steve Sabbagh<sup>5</sup>

<sup>1</sup>General Atomics, USA (formerly EURATOM/UKAEA), <sup>2</sup>EURATOM/CCFE Fusion Association, UK. <sup>3</sup>Princeton Plasma Physics Laboratory, NJ. <sup>4</sup>General Atomics, USA. <sup>5</sup>Columbia University, NY.

*Work conducted under the European Fusion Development Agreement and jointly funded by EURATOM, the UK EPSRC, and US DOE under contract.* 

