

Supported by

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Study of Error Field Physics in Tokamaks and Implications for ITER

J.-K. Park¹, J. E. Menard¹, S. P. Gerhardt¹, A. H. Boozer² R. J. Hawryluk¹, W. M. Solomon¹, M. S. Chance¹, S. A. Sabbagh², H. Reimerdes³, M. Lanctot³, M. J. Schaffer³, A. M. Garofalo³, R. Buttery³, S. M. Wolfe⁴

Princeton Plasma Physics Laboratory, USA
 2) Columbia University, USA
 3) General Atomics, USA
 4) Plasma Science and Fusion Center, USA

The 51th APS DPP, Atlanta, Georgia November 4, 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hvogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Non-axisymmetric error fields are dangerous to tokamaks

- Non-axisymmetric error field can
 - Destroy magnetic surfaces and produce magnetic islands
 - Deform magnetic surfaces and produce non-ambipolar transport

- Magnetic islands can
 - Cause Locked Modes (LMs)
 - Cause Neoclassical Tearing Modes (NTMs)
- Low toroidal harmonic (n=1) perturbations are typically related to LMs and NTMs

- Non-ambipolar transport can
 - Cause Neoclassical Toroidal Viscosity (NTV) transport
 - Cause other transport?
- Higher toroidal harmonics (n=3) perturbations are typically related to NTV transport

Plasma performance can be greatly changed by error fields

 Plasmas can be locked and disrupted by n=1 error fields in NSTX

 Plasmas can be sustained longer by correcting n=3 error fields in NSTX and by suppressing NTV rotational damping

Plasma response is important to explain different sensitivity of plasmas to error field

• Plasma response is important to explain the sensitivity of plasmas to external error fields

Ideal plasma response is fundamental, but important step

- Force-free cylindrical example :
 - Total Perturbed field (δB) = Plasma Field from perturbed plasma currents (δB^P) + External field from external currents (δB^X)

IPEC solves ideal plasma response with shielded islands

- Ideal Perturbed Equilibrium Code (IPEC) solves ideal perturbed tokamak equilibria with free boundary
 - Ideal force balance (since plasma is almost ideal in practice) :

axisymmetric $\vec{\nabla} p_0 = \vec{j}_0 \times \vec{B}_0$ and small (linear) perturbations

 $\vec{F}[\vec{\xi}] = \vec{0} = \vec{\nabla}\delta p - \delta \vec{j} \times \vec{B}_0 - \vec{j}_0 \times \delta \vec{B}$

 $\delta \vec{B} = \vec{\nabla} \times (\vec{\xi} \times \vec{B}_0), \ \delta \vec{j} = (\vec{\nabla} \times \delta \vec{B}) / \mu_0 \text{ and } \delta p = -\vec{\xi} \cdot \vec{\nabla} p_0 - \gamma p_0 (\vec{\nabla} \cdot \vec{\xi})$

– Internal boundary conditions suppressing islands :

Resonant field = 0 at the resonant surfaces

with currents shielding the total resonant field δB_{mn}

Total resonant field can open islands and cause locking

External boundary conditions are given by external coils
 <u>IPEC solves free boundary equilibria in a unique way</u>

[Park et al, Phys. Plasmas <u>14</u>, 052110 (2007)]

IPEC gives relevant physics for LMs and NTV

 <u>Total resonant field</u> at the rational surfaces is the field driving magnetic islands and LMs

 <u>Variation in the field strength</u> <u>along the perturbed field lines</u> is driving non-ambipolar transport and NTV

$$\delta B_L \equiv \delta B_E + \vec{\xi} \cdot \vec{\nabla} B_0$$

with $\delta_E B \equiv \delta \vec{B} \cdot \hat{b}_0$

[Park et al, Phys. Plasmas 16, 082512 (2009)]

Magnetic sensor measurements can show importance of ideal plasma response

- IPEC can calculate the field (δB^P) by ideally perturbed plasma currents
- Plasma response at sensors can be estimated by integrating IPEC field and can be directly compared with RFA measurements

Comparison between IPEC and n=1 RFA DIII-D measurements showed good agreements except marginally stable case

 All the sensors give good agreements for amplitudes and toroidal phases, when plasma is below the no-wall limit

[See DIII-D poster by H. Reimerdes]

 RFA results are also successfully compared with MARS simulations

[See DIII-D talk by M. Lanctof]

IPEC applications to LMs explained paradoxical error field correction results in tokamaks

 Error field corrections and locking experiments in NSTX and DIII-D could not be explained by standard density correlations, when various intrinsic error fields and corrections are combined

IPEC applications to LMs explained greater sensitivity of plasmas to error fields at high-β

- IPEC resonant field restores linear density correlation across low- β and high- β plasmas
- Intrinsic error field effects are very weak for IPEC resonant field due to large shielding of the unfavorable field spectrum

[See NSTX talk by S. P. Gerhardt]

Total resonant field and density give good parametric scaling for LMs

• The best four-parameter scaling with total resonant field:

Overlapped external field and density give good parametric scaling for LMs

• The best four-parameter scaling with overlapped external field :

$$\frac{\delta B_{oc1}^{\lambda}}{B_{T0}} \le 0.5 \times 10^{-4} \left(n [10^{19} \, m^{-3}] \right)^{1.3} \left(B_{T0}[T] \right)^{-1.8} \left(R_0[m] \right)^{1.3} \beta_N^{-0.90}$$

Where the overlapped external field is the convolution between applied field and the most sensitive external field that maximizes total resonant field for the core

Low-β NSTX
 Low-β DIII-D
 Low-β CMOD
 Low-β DIII-D with Right-handed config.
 High-β NSTX
 High-β DIII-D

NSTX

External resonant field gives poor correlation even with corrections by plasma amplifications

• Correlations can be found if amplification effects are included by normalized beta scaling, but are still very poor :

$$\frac{\delta B_{21}^x}{B_{T0}} \le 1.1 \times 10^{-4} \left(n [10^{19} \, m^{-3}] \right)^{0.66} \left(B_{T0} [T] \right)^{-1.0} \left(R_0 [m] \right)^{0.02} \beta_N^{-0.40}$$

 $\diamondsuit Low-\beta NSTX \ \diamondsuit Low-\beta DIII-D \ \diamondsuit Low-\beta CMOD \ \Box Low-\beta DIII-D with Right-handed config.$ $\bigcirc High-\beta NSTX \ \bigcirc High-\beta DIII-D$

Extrapolations to ITER

• Three parametric scaling :

$$\frac{\delta B_{21}}{B_{T0}} \le 3.7 \times 10^{-4} \left(n[10^{19} \, m^{-3}] \right)^{1.0} \left(B_{T0}[T] \right)^{-1.4} \left(R_0[m] \right)^{0.85} \sigma_{NR0}^{-0.44}$$

$$\frac{\delta B_{oc1}^x}{B_{T0}} \le 0.5 \times 10^{-4} \left(n[10^{19} \, m^{-3}] \right)^{1.3} \left(B_{T0}[T] \right)^{-1.8} \left(R_0[m] \right)^{1.3} \beta_N^{-0.90}$$
EF coils (Ex-vessel)
$$\frac{\delta B_{21}^x}{B_{T0}} \le 1.1 \times 10^{-4} \left(n[10^{19} \, m^{-3}] \right)^{0.66} \left(B_{\bar{T}\bar{0}}[T] \right)^{-1.0} \left(R_0[m] \right)^{0.02} \beta_N^{-0.40}$$

• Extrapolations to ITER :

$$\frac{\delta B_{21}}{B_{T0}} \le 1.6 \times 10^{-4} \left(n [10^{19} \, m^{-3}] \right)^{1.0} \sigma_{NR0}^{-0.44}$$
$$\frac{\delta B_{oc1}^{x}}{B_{T0}} \le 0.26 \times 10^{-4} \left(n [10^{19} \, m^{-3}] \right)^{1.3} \beta_{N}^{-0.90}$$
$$\cdots \frac{\delta B_{21}^{x}}{B_{T0}} \le 0.2 \times 10^{-4} \left(n [10^{19} \, m^{-3}] \right)^{0.66} \beta_{N}^{-0.40}$$

NTV transport can be coupled with IPEC variation in the field strength

- IPEC gives variation in the field strength along the perturbed field lines
- IPEC information can be coupled to various NTV formula

$$\tau_{\varphi} \cong C[\delta B]^2 \frac{v(\omega_E - \omega_0)}{\left(\ell \,\omega_\ell - n\omega_E - n\omega_B\right)^2 + v^2}$$

Fundamental parametric dependency is under active study

- Parametric dependency is under study
- Lorentzian response has been reported from DIII-D

$$au_{\varphi} \propto rac{v(\omega_E - \omega_0)}{\left(\ell \,\omega_\ell - n \omega_E\right)^2 + v^2}$$

[See DIII-D talk by W. M. Solomon]

NTV coupled with IPEC calculations can explain n=3 error field correction results in NSTX within order of magnitudes

 Generalized NTV coupled with IPEC calculations can explain n=3 error field correction results within order of magnitudes

[See NSTX talk by S. P. Gerhardt]

Summary and Future Work

- Ideal plasma response is the key to understanding of error field physics up to the no-wall limit
 - Plasma amplifications by IPEC can bridge low and high- β error field threshold
 - Error field threshold for n=1 is successfully established for ITER across low and high, and across NSTX, DIII-D, and CMOD
 - Error field corrections for n=3 can be also explained by NTV coupled with IPEC calculations
- IPEC and NTV will be used to establish more comprehensive error field database combining
 - Different toroidal harmonic perturbations
 - Rotation and magnetic braking
 - Onset of Neoclassical Tearing Modes (NTMs)

Back up

