

Supported by

Nonlinear three-wave interaction of

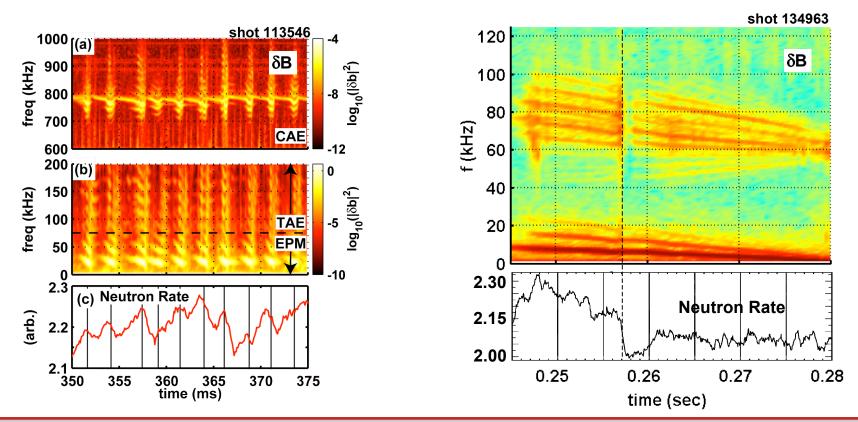
fast-ion modes in the NSTX*

Neal A. Crocker UCLA

College W&M **Colorado Sch Mines** ED Fredrickson,² S Kubota¹, WA Peebles,¹ Columbia U RE Bell,² SM Kaye,² BP LeBlanc,² JE Menard² and the NSTX Team Comp-X **General Atomics** ¹ UCLA. ²PPPL INEL Johns Hopkins U 51st Annual Meeting of the Division of Plasma Physics LANL Atlanta, GA LLNL Lodestar November 2-6, 2009 MIT *Supported by USDOE Contracts DE-FG03-99ER54527 and DE-AC02-09CH11466 **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI Princeton U SNL Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U Illinois U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

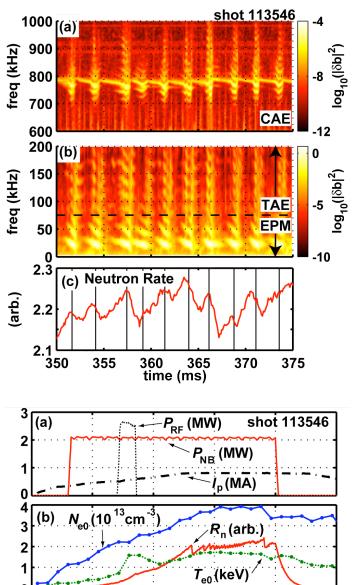
Office of


- Bursts of fluctuations observed with broad spectrum of fast-ion modes: EPM, TAE and CAE — bursts correlate with fast-ion loss
- Spacing of spectrum (Δ*f*,Δ*n*) indicates three-wave interactions between EPM, TAE and CAE
- Three-wave interactions indicated by spectrum are confirmed by high bicoherence of mode triplets
- Interaction with the EPMs toroidally localizes TAEs and CAEs into wave-packets
- CAE wave-packet subdivided by interaction with TAEs
- Orbit modification is nonlinear ⇒ observed wave-packets may have consequence for fast-ion transport

Motivation: three-wave interaction of fast-ion modes can impact plasma performance

- Plasma heated by fast-ions (*e.g.* fusion α's, neutral beam ions) fast-ions must be confined
- Fast-ion modes modes excited by fast-ions (*e.g.* Alfvén eigenmodes and energetic particle modes) — modify fast-ion orbits
 - fast-ions transported, possibly lost from plasma
- Orbit modification is *nonlinear*
 - multiple modes can cause *disproportionate* transport (*e.g.* avalanches)
 - relative *phasing* and *amplitude* of modes matters
- Three-wave interaction can impact fast-ion transport
 - can broaden fast-ion mode spectrum \Rightarrow more modes
 - can change relative phases of modes ⇒ coherent structures (e.g. wavepackets)

Three-wave interaction impacts fast-ions in neutral beam heated NSTX plasmas


- Three-wave interaction of fast-ion modes common in NSTX neutral beam heated plasmas
- Three-wave interaction often observed during fast-ion loss events

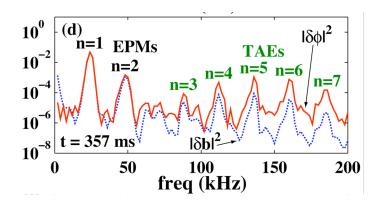
MATX UCL

Broad spectrum of fast-ion modes observed during fast-ion loss events

- Bursts of magnetic fluctuations observed in Lmode, NB plasma
 - 2 MW NB
 - $T_e \sim 2 \text{ keV}; n_e \sim 4 \times 10^{13} \text{ cm}^{-3}$
- Bursts correlate with neutron rate drops (~ 5%)
- Bursts exhibit broad spectrum of fast-ion modes
 - energetic particle modes (EPM): f = 0 - 75 kHz, n = 1 - 3
 - toroidicity-induced Alfvén eigenmodes (TAE): f = 75 - 200 kHz, n = 3 - 7
 - compressional Alfvén eigenmodes (CAE):
 f = 100 1000 kHz, n = -12 -3

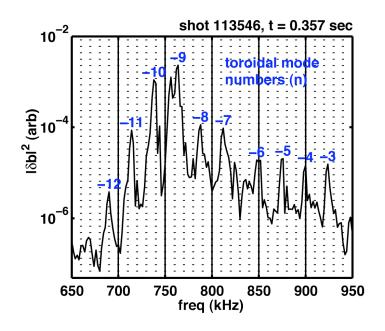
100

200


time (ms)

300

400

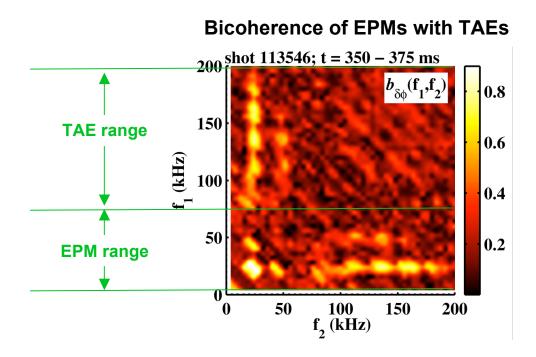

500

Spectrum indicates three-wave interactions of EPMs with TAEs

- Mode triplet interacts if $f_1 = f_2 + f_3$ and $n_1 = n_2 + n_3$
- TAE spectrum shows pairs of neighboring TAEs can interact with EPMs:
 - spectrum spacing matches fundamental EPM: $\Delta f = f_{\text{FPM}} = 1, \ \Delta n = n_{\text{FPM}} = \sim 24 \text{ kHz}$
 - pairs of neighboring TAEs, (f_{TAE1}, n_{TAE1}) and (f_{TAE2}, n_{TAE2}) , satisfy: $f_{TAE2} = f_{TAE1} + f_{EPM}$, $n_{TAE2} = n_{TAE1} + n_{EPM}$

Spectrum indicates three-wave interactions of CAEs with EPMs and with TAEs

- CAE spectrum shows two groups of CAEs
 - n = -12 -7, f = 690 810 kHz;
 - n = -6 -3, f = 850 925 kHz

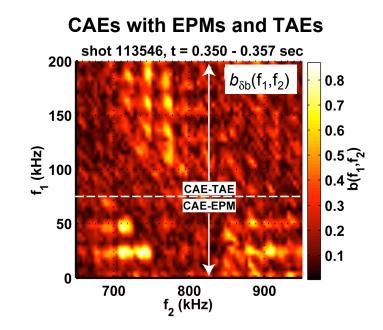

NSTX UCLA

- Some CAE pairs can interact with EPMs, others with TAEs
 - spacing within each group matches fundamental EPM:

 $\Delta f = f_{\text{EPM}} = 1$, $\Delta n = n_{\text{EPM}} = \sim 24 \text{ kHz}$

- spacing between groups matches fundamental TAE: $\Delta f = f_{TAF} = 5, \Delta n = n_{TAF} = \sim 135 \text{ kHz}$

High bicoherence of mode triplets confirms three-wave interaction of EPMs with TAEs

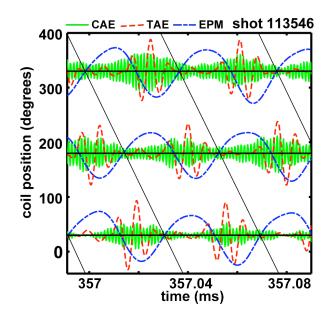


- Bicoherence tests for statistically significant three-wave interaction
 - bicoherence = coherence of product of wave pair $[\delta x(f_1)\delta x(f_2)]$ with sum wave $[\delta x(f_1+f_2)]$

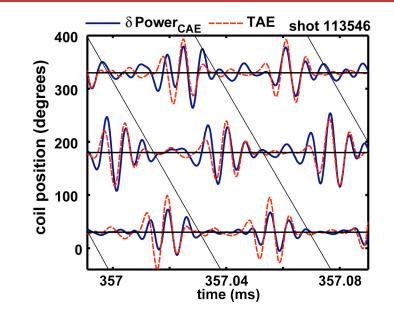
 $b_{\delta x}(f_1, f_2) = \frac{|\langle \delta x(f_1) \delta x(f_2) \delta x^*(f_1 + f_2) \rangle|}{\left(\langle |\delta x(f_1) \delta x(f_2)|^2 \rangle \langle |\delta x(f_1 + f_2)|^2 \rangle \right)^{1/2}}$

 High bicoherence peaks seen for triplets that include EPM (e.g. *f* ~ 24 kHz, *n* = 1) and pair of neighboring TAEs

High bicoherence of mode triplets confirms three-wave interaction of CAEs with EPMs and with TAEs


- Interaction of CAEs with EPMs: high bicoherence peaks seen for triplets that include EPM (e.g. *f* ~ 24 kHz, *n* = 1) and pair of *neighboring* CAEs within each group
- Interaction of CAEs with TAEs: high bicoherence peaks seen for triplets that include TAE (e.g. *f* ~ 135 kHz, *n* = 5) and pair of CAEs with one from each group

Interaction with the EPMs toroidally localizes TAEs and CAEs into wave-packets


- CAE and TAE fluctuations concentrated into toroidally propagating wavepackets
 - band-pass filtering divides magnetic fluctuation into distinct contributions of EPM, TAE and CAE
 - TAE and CAE amplitudes modulated
 - phase of amplitude modulation increases with toroidal angle
- Wave-packets phase-locked to EPM
 - amplitude modulation frequency = EPM frequency
 - phase of amplitude modulation correlates with toroidal phase of EPM
- Phase-locking of wave-packets with EPM expected from three-wave interaction

NSTX UCLA

− $\Delta f/\Delta n = f_{\text{EPM}}/n_{\text{EPM}}$ for TAE and CAE spectra \Rightarrow group velocity of superposition = phase velocity of EPM

CAE wave-packet subdivided by interaction with TAEs

- CAE fluctuation power is modulated at TAE frequency
 - CAE fluctuation power obtained by low pass filtering square of CAE fluctuation
 - modulation by TAEs isolated by band-pass filtering to retain TAE frequency range
- Modulation correlates in time and space with TAE wave-packet (both envelope and carrier wave)
- Modulation induces TAE scale structure into EPM-induced wave-packet

Discussion: Observed wave-packets have possible consequences for fast-ion transport

- Orbit modification is *nonlinear*
 - multiple modes can cause *disproportionate* transport (*e.g.* avalanches)
 - relative *phasing* and *amplitude* of modes matters
 - multiple modes form beat and sum waves ⇒ possible new resonances for fast-ion orbits
- Observed three-wave interactions form wave-packets ⇒ relative mode phases are modified
- Wave-packet may impact transport differently from same spectrum with random mode phases
 - wave-packet formation concentrates perturbation spatially ⇒ locally amplifies "kick" delivered to fast-ions

12

- fast-ions orbits can resonate with envelope or carrier wave
- wave-packet structure implies pondermotive force is it significant?

- Bursts of fluctuations observed with broad spectrum of fast-ion modes: EPM, TAE and CAE — bursts correlate with fast-ion loss
- Spacing of spectrum (Δ*f*,Δ*n*) indicates three-wave interactions between EPM, TAE and CAE
- Three-wave interactions indicated by spectrum are confirmed by high bicoherence of mode triplets
- Interaction with the EPMs toroidally localizes TAEs and CAEs into wave-packets
- CAE wave-packet subdivided by interaction with TAEs
- Orbit modification is nonlinear ⇒ observed wave-packets may have consequence for fast-ion transport

13

Questions raised and avenues for future research

Questions for near term

- Is spectrum of interacting TAEs (or CAEs) composed of linear eigenmodes? (i.e. is three-wave interaction weak)?
 - is spacing of linear TAE and CAE spectrum conducive to weak three-wave interaction?
 - if yes, radial/poloidal wave-packet structure may be predicted
- How does wave-packet impact on fast-ions orbits? \Rightarrow ORBIT calculation
 - compare wave packet to random phase fluctuations with same power
 - assumptions and/or measurement required for radial/poloidal wave-packet structure
 - need experimental cases with good fast-ion diagnosis and three-wave statistics

Broader questions

- Do three-wave interactions transfer energy across scales e.g. does EPM–TAE interaction destabilize TAEs?
 - broader spectrum \Rightarrow more efficient transfer of fast-ion energy to plasma?
- What nonlinearities give rise to interaction?
 - MHD/fluid nonlinearities? (e.g. JXB well-known to couple Alfvén to acoustic waves)
 - toroidal modulation of fast-ion pressure?
 - ...?

Requests for electronic copies

