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Nalidated Models of Fast lon Redistribution are
Needed for Design of Next Generation Devices

« Next step devices (ITER, NHTX, ST-CTF, etc) will
have large, super-Alfvénic fast ion populations
which may excite instabilities (energetic particle
modes, Alfvén modes).

* Fast-ion driven instabilities cause diffusion and
loss of fast ions, increasing ignition thresholds.

- Transient fast-ion losses can damage PFCs.

« Fast-ion redistribution affects beam-driven current
profiles in AT operating regimes.

- Small p* means transport is more likely through
interaction of multiple modes.

- Understanding non-linear collective behavior is
\key to predictions for ITER.
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Multi-mode interaction of Toroidal Alfvén

Eignmodes can greatly enhance fast ion transport

Berk,et al., Phys. Plas. 2 (1995) 3007
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- Large amplitude modes overlap in
fast-ion phase-space.

| * Interaction accesses more free

energy; resulting in stronger modes,
destabilizes new modes; leading to
more fast ion transport.

- Interaction of multiple modes can
also move ions further in phase-
space, again enhancing losses.

- TAE avalanches have strong mode
bursts consisting of multiple modes.

- TAE have multiple resonances,
more complex physics.

NSTX has low field, high density and Current;\

perfect for study of fast ion-driven modes

- Low field, high density Ve = 0.5 - 2.7 x 108 m/s.
- Beam injection energy 60 - 100 kV, V;,,=2.6 - 3.1 x 10° m/s

- Reactors would have higher field, fusion a's and Vi /V ajen> 1
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Non-linear physics of Alfvénic an
Energetic Particle modes is research priority

 Fast ion transport and losses enhanced by Alfvénic or
Energetic Particle modes can:

e Change beam-driven current profiles,
 Raise ignition threshold or damage PFCs on ITER.

e Non-linear physics necessary to understand saturation
amplitudes, frequency chirps and fast ion transport.

 NOVA and ORBIT: Non-linear effects simulated by
Incorporating experimental data such as mode
amplitude and frequency evolution, triggering of
multiple modes.

» M3D-k: Some non-linear effects described here
(enhanced fast ion transport from multiple modes,

larger amplitude, frequency chirps) have been studied
with M3D-k*. /
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 Neutron drops correlated

ple, strong TAE bursts occur during NBI
heating; identified as avalanches

with D-alpha spikes -
lons are lost.

* Neutral particle analyzers :
(NPA) measure spectrum ol

of charge-exchanged

neutral ions from plasma.
 Transport appears largest

at lower energies.
- Chirping may play

important role in fast ion

loss.
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/ Sheared rotation distorts TAE continuum\
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1+ Blue curves show
n=3 Alfvén continuum
neglecting sheared
rotation.

{* Solid red lines show
continuum including
rotation shear effects.

e Dashed red curve
Doppler frequency
for n=3 mode.
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e Gap closed by
rotation shear is
Insensitive to
evolution of g(0).
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/ ORBIT si

mulations predict losses in good agreement
with observed neutron rate drop

70 | « ORBIT simulation is done for
s0| Fast lon Loss (%) 1ms burst a.’[ 0.285s.

e n=3. n=2 and n=4 modes * Mode amplitude, frequency
50 | _ 1/ evolution in ORBIT are from

® Only n=3 mode .

experimental measurements.

40+ - Mode structure from NOVA.
30 |- 1+ Initial fast ion distribution is

Neutron Rate from unperturbed TRANSP
20 Drop (%) 1 calculation — not necessarily
- self-consistent.

* Losses are strongly non-linear
oL o ®°° . . with mode amplitude — as
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expected for avalanche.
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/ NOVA doesn’t have enough physics, resolution to properly\
model continuum interactions

Avalanches easiest to produce with / External B pitch in agreement with NOVA simulations — \ 852Kz S 124781285 Jus2kdz 124781 285
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 Helium target plasma used to maintain L-mode.
Qisoharge evolution complicated. /
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« Should be measureable with Thomson Scattering.
kDifficuIt to imagine larger modes... /
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consistent with NPA

energy.

simulations

 Losses seen at all energies,

measurements, but more at low

» Fast ion losses larger at higher
frequencies; need to add
sheared rotation to ORBIT

* Energy dependence of losses is
important for estimating impact
on fast ion current drive.

Energy dependence and frequency dependence of losses also investigateh
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- Strong frequency dependence suggests that including rotational shear (potential profile) in
ORBIT will affect losses, as modes will have different effective frequencies in plasma

Fast lon Loss Fraction (%)
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/ TAE bursts identified as avalanches based on NOVA and ORBIT simulations\

- Magnitude of losses roughly consistent with ORBIT simulations.
- Plasma equilibrium reconstructed using MSE data; these avalanches are in reversed-shear plasma.

- Avalanches have 1) long, low amplitude period followed by strong increase in amplitude, 2) large,
downward frequency chirp and 3) multiple modes.

- Mode radial structure measured with 5-channel reflectometer.

- Fast-ion loss indicated by neutron drops (D, bursts) and redistribution measured with NPA.

- Fast-ions losses are seen down to 30 keV (< half of full beam energy).

- Mode structure shows small changes during 1 ms frequency chirp.

- NOVA simulations find reasonably good agreement in mode structure and eigenmode frequency (pre-

- Fast-ion losses are being simulated using measured mode amplitudes to scale NOVA eigenfunctions.
- ORBIT finds strong frequency dependence of losses

- Sheared rotation may be important, but not included in present simulations
\-ORBIT predicts stronger losses at lower energy, consistent with V. ., being closer to Vi an-
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