

Supported by

U.S. DEPARTMENT OF Office of Science

Observation of 'Anomalous' Energetic Ion Spectra by the E||B Neutral Particle Analyzer in the National Spherical Torus Experiment

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U Purdue U** SNL Think Tank, Inc. **UC Davis UC** Irvine **UCLA** UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

S. S. Medley, R. E. Bell, D. S. Darrow, E. D. Fredrickson, N. N. Gorelenkov, B. P. Leblanc, A. L. Roquemore (PPPL), M. Podestà (UC Irvine)

51st Annual APS-DPP Physics Meeting

November 2 - 6, 2009 Atlanta, GA

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Abstract

Observation of 'Anomalous' Energetic Ion Spectra by the EllB Neutral Particle Analyzer on NSTX, S. S. Medley, R. E. Bell, D. S. Darrow, E. D. Fredrickson, N. N. Gorelenkov, B. P. LeBlanc, A. L. Roquemore (PPPL), M. Podesta (UC Irvine) – An 'anomalous' increase in EIIB NPA charge exchange neutral flux (\sim 4x) localized at the neutral beam(NB) injection full energy, E_b = 90 keV, is observed in NSTX. This so-called 'High-Energy Feature (HEF)' appears in discharges only when kink-type modes (f < 10 kHz) are absent. TAE activity (f \sim 10-150 kHz) is weak ($\delta B_{rms} < 75$ mGauss) and CAE activity (f ~ 400 – 1200 kHz) is robust. The HEF exhibits a growth time of \sim 20-80 ms and develops a slowing down distribution that evolves over 100-400 ms, a time scale long compared with the ~ 50 ms equilib ration time of the NB injected particles. Increases of ~ 10 -30% in the measured neutron yield and total stored energy are observed to coincide with the HEF alo ng with broadening of the CHERS T_i(r) profile. The HEF is observed only in H-mode (not L-mode) discharges with injected NB power above 4 MW and is suppressed by vessel conditioning using lithium deposition at rates ~ 100 mg/shot sufficient to suppress ELM activity. Though a d efinitive mechanism has yet to be developed, the HEF appears to be driven by a form of CAE resonance.

Work supported by US-DOE contract DE-AC02-09CH11466.

High-Energy Feature (HEF)

A strong increase (~ 3x) in the EIIB NPA charge exchange flux that is narrowly localized around the NB full energy: $E_b \sim 90$.

The HEF is a transient mid-discharge phenomenon with durations ~ 100 - 600 ms.

The Neutral Particle Analyzer (NPA) on NSTX Scans Horizontally and/or Vertically on a Shot-to-Shot Basis

• Intersection of NPA sightline with beam neutrals spatially localizes the charge exchange flux measurement with a spatial resolution of $\Delta R \sim 20$ cm and $\Delta Z \sim 3$ cm.

The Pitch Angle Viewed by the NPA is Localized by the Sightline/NB Intersection Region

• For 'typical' Rtan ~ 70 - 80 cm, the NPA views passing ions with $v_{\mu}/v \sim 0.80 \pm 0.1$.

() NSTX

'Normal' NPA Energetic Ion Spectra: H-mode with Robust MHD Activity H-mode with $I_p = 0.9$ MA, $B_T = 5.0$ kG, $P_{NB} = 4$ MW, $n_eL \sim 4x10^{13}$ cm⁻²

• Depletion of the NPA spectrum in the range $E_b/2 \le E \le E_b$ by ~ 3 e-foldings is due to the combined effects of n_e ramp-up and MHD-induced energetic ion redistribution.

Illustration of a 'Brief' High-Energy Feature (HEF) at t ~ 0.5-0.6 s H-mode with $I_p = 1.0$ MA, $B_T = 4.5$ kG, A&C @ 90 keV, $P_{NB} = 4$ MW, $n_eL \sim 6x10^{13}$ cm⁻²

Illustration of a 'Long' High-Energy Feature (HEF) at t ~ 0.6-0.9 s H-mode with $I_p = 1.2$ MA, $B_T = 4.5$ kG, AB&C @ 90 keV, $P_{NB} = 6$ MW, $n_eL \sim 6.6 \times 10^{13}$ cm⁻²

The High-Energy Feature is not a NPA Instrumental Artifact

H-mode with $I_p = 1.2$ MA, $B_T = 4.5$ kG, $P_{NB} = 6$ MW, $n_e L \sim 7x10^{13}$ cm⁻²

Overview of High-E Feature Observations

- tabulation details are discussed in subsequent viewgraphs

			◀	— I	MHD Ac	ctivity —		▲ N	IPTS/CH	IERS Pr	ofiles—	→		
Shot	High-E	∆t(s)	TAE	Kink	CAE	δΒταε	δΒςαε	$\Delta Te(r)$	∆ne(r)	$\Delta Ti(r)$	$\Delta V \phi(r)$	$\Delta \mathbf{Z}$ eff	Δ Sn(%)	∆W(%)
127216	\checkmark	0.50-0.75	х	х	\checkmark	20	0.7	х	х	14	41	-12	14	9
127217	\checkmark	0.50-0.65	х	х	\checkmark	30	0.8	х	х	17	20	0	10	10
*127221	\checkmark	0.45-0.80	х	х	\checkmark	40	0.9	х	х	14	47	-13	14/30	10/19
127222	\checkmark	0.50-0.70	х	х	\checkmark	30	1.0	х	х	0	0	0	19	9
127236	\checkmark	0.45-0.67	х	х	\checkmark	50	0.8	\checkmark	х	23	47	0	18	16
127252	\checkmark	0.43-0.58	х	\checkmark	\checkmark	60	1.0	х	\checkmark	44	29	-15	27	18
*127253	\checkmark	0.35-0.63	х	х	\checkmark	15	0.5	х	\checkmark	0	0	0	21	33
127254	\checkmark	0.24-0.52	х	х	\checkmark	15	0.7	х	\checkmark	30	75	10	15	20
127256	\checkmark	0.43-0.54	х	х	\checkmark	20	0.5	х	\checkmark	х	х	х	0	5
127723	\checkmark	0.48-0.73	х	х	\checkmark	60	1.0	х	х	28	0	-14	27	16
*127953	weak	0.55-0.80	\checkmark	х	\checkmark	70	1.0	∆ Pb	∆ Pb	∆ Pb	Δ Pb	Δ Pb	∆ Pb	∆ Pb
*127957	\checkmark	0.47-0.64	\checkmark	х	\checkmark	60	1.0	х	\checkmark	43	43	14	7/3.5	13/10
128032	\checkmark	0.47-0.62	\checkmark	х	\checkmark	60	3.0	\checkmark	\checkmark	4	20	0	13	15
128033	\checkmark	0.48-0.62	\checkmark	х	\checkmark	50	3.0	\checkmark	\checkmark	7	25	11	21	12
128600	$\sqrt{\sqrt{\sqrt{1}}}$	0.35-0.56	x√√	х	\checkmark	15	6.0	Δ Pb	∆ Pb	∆ Pb	Λ Pb	∆ Pb	∆ Pb	∆ Pb
128606	$\sqrt{\sqrt{\sqrt{1}}}$	0.35-0.56	$\sqrt{\sqrt{\sqrt{1}}}$	х	\checkmark	70	2.5	Λ Pb	Λ Pb	Λ Pb	Λ Pb	Δ Pb	Δ Pb	Λ Pb
*128729		0.55-0.76	х	х	\checkmark	?	?	Δ Pb	Δ Pb	∆ Pb	Λ Pb	Δ Pb	∆ Pb	Δ Pb
128820	√x	0.38-0.52	x√	x√	\checkmark	50	4.0	\checkmark	х	49	33	-20	100	33
128852	\checkmark	0.50-0.84	х	х		50	2.0	Δ Pb	Δ Pb	∆ Pb	Δ Pb	∆ Pb	∆ Pb	Δ Pb
128857	\checkmark	0.45-0.73	х	х	\checkmark	60	2.0	х	\checkmark	33	73	-55	12	6
128893	\checkmark	0.50-0.80	х	х	\checkmark	60	4.0	Λ Pb	Λ Pb	Δ Pb	Λ Pb	Λ Pb	Λ Pb	Λ Pb
*128895	$\sqrt{}$	0.32-0.92	√x	х	\checkmark	50	1.0	х	Х	12	29	0	18	15
128897	$\sqrt{}$	0.32-0.92	√x	√x	\checkmark	50	1.5	\checkmark	\checkmark	33	15	0	20/5	13/4
128931	\checkmark	0.50-0.60	х	х	\checkmark	20	4.0	Λ Pb	Λ Pb	Λ Pb	Λ Pb	Δ Pb	Δ Pb	Λ Pb
132 <mark>340</mark>	\checkmark	0.44-0.65	х	х		60	3.0	х	х	25	24	17	35	34
132800	\checkmark	0.48-0.60	Х	х	\checkmark	50	1.5	х	Х	29	19	7	33	16

 $\sqrt{-1}$ effect occurs during Δt x - effect does not occur ΔP_b - NB power step obfuscates data #/# = data/TRANSP

HEF Discharge Characteristics: SN132800 H-mode with Ip = 1 MA, $B_T = 4.5$ kG, NB A&C @ 90 keV, $P_{NB} = 4$ MW, $n_eL \sim 6x10^{13}$ cm⁻²

- HEF onset typically occurs during mid-discharge: e.g. t ~ 0.4 0.5 s.
- HEF seen for mid-plane NPA sightlines with: $R_{tan} \sim 55 86$ cm, $v_{II}/v \sim 0.7 0.9$.

HEF Existence Requires No Kink and Weak TAE MHD Activity

- no MHD 'chirping' is observed on Mirnov signals during HEF interval

HEF Existence Requires Feeble Kink/TAE MHD Activity: SN128895

- no MHD 'chirping' is observed on Mirnov signals during HEF interval

HEF Exist for TAE Activity Below a δB "Threshold"

Shot	High-E	TAE	CAE	δΒταε	$\delta {f B}$ cae
127216		х		20	0.7
127217		х		30	0.8
*127221		х		40	0.9
127222		х		30	1.0
127236		х		50-150	0.8
127252	weak	х	\checkmark	60	1.0
*127253		х		15	0.5
127254		х		15	0.7
127256		х		20	0.5
127723		х		60	1.0
*127953	weak	\checkmark		70	1.0
*127957				60	1.0
128032				60	3.0
128033		\checkmark		50	3.0
128600	$\sqrt{\sqrt{\sqrt{1}}}$	x√√		15	6.0
128606	$\sqrt{\sqrt{\sqrt{1}}}$	$\sqrt{\sqrt{\sqrt{1}}}$		70	2.5
*128729		х		?	?
128820	√x	x√		50-200	4.0
128852		х		50	2.0
128857		х		60	2.0
128893		Х	\checkmark	60	4.0
*128895	$\sqrt{}$	√x		50	1.0
128897	$\sqrt{}$	√x	\checkmark	50	1.5
128931		Х		20	4.0
132340		Х		60	3.0
132800		Х		50	1.5

mGauss) but over a wide range of CAE MHD.

High-k Scattering Shows Density Fluctuation Activity during the HEF

H-mode with Ip = 0.9 MA, $B_T = 5.0 \text{ kG}$, NB A&B @ 90 keV, $P_{NB} = 4 \text{ MW}$, $n_e L \sim 5 \times 10^{13} \text{ cm}^{-2}$

NSTX

HEF Rise-time and Duration Show Considerable Variation

- NPA data at 90 keV

HEF Rise-time and Flux Increase Vary with CAE Strength

• HEF rise-time shows correlation with CAE δB_{rms} amplitude, but flux increase less so.

HEF Rise-time and Flux Increase Variation with NB Power

• The scatter plot suggests a trend towards longer, stronger HEFs with increased P_b.

Neutron Yield and Stored Energy Variation during HEF Interval

Shot	High-E	∆t(s)	Δ Sn(%)	∆W(%)	
127216	\checkmark	0.50-0.75	14	9	
127217	\checkmark	0.50-0.65	10	10	
*127221	\checkmark	0.45-0.80	14/30	10/19	
127222	\checkmark	0.50-0.70	19	9	
127236	\checkmark	0.45-0.67	Δ Pb	Δ Pb	
127252	weak	0.43-0.58	27	18	
*127253	\checkmark	0.35-0.63	20/23	33/32	
127254	\checkmark	0.24-0.52	15	20	
127256	\checkmark	0.43-0.54	0	5	
127723		0.48-0.73	27	16	
*127953	weak	0.55-0.80	Δ Pb	Δ Pb	
*127957	\checkmark	0.47-0.64	7/3.5	13/10	
128032	\checkmark	0.47-0.62	13	15	
128033	\checkmark	0.48-0.62	21	12	
128600	$\sqrt{\sqrt{\sqrt{1}}}$	0.35-0.56	Λ Pb	Δ Pb	
128606	$\sqrt{\sqrt{\sqrt{1}}}$	0.35-0.56	Δ Pb	Δ Pb	
*128729	\checkmark	0.55-0.76	Δ Pb	Δ Pb	
128820	√x	0.38-0.52	∆ Pb	∆ Pb	
128852	\checkmark	0.50-0.84	Λ Pb	Λ Pb	
128857	\checkmark	0.45-0.73	12	6	
128893	\checkmark	0.50-0.80	Λ Pb	Λ Pb	
*128895	$\sqrt{}$	0.32-0.92	18	15	
128897	$\sqrt{}$	0.32-0.92	20/5	13/4	
128931	\checkmark	0.50-0.60	Λ Pb	Δ Pb	
132340	\checkmark	0.44-0.65	35	34	
132800	\checkmark	0.48-0.60	33	16	

- The experimental neutron rate and total stored energy increase during the HEF.
- Similar increases are observed in *some* TRANSP analyses (blue squares).

Does HEF Drive Changes in Temperature or Density Profiles?

Example shows edge broadening of $T_i(r)$ at $R_{maj} \sim 130$ cm, but none for $T_e(r)$

Shot	High-E	∆Te(r)	∆ne(r)	∆Ti(r)	$\Delta V \phi(r)$	∆Zeff	
127216		х	х	14	41	-12	
127217		Х	Х	17	20	0	
*127221		Х	Х	14	47	-13	
127222	\checkmark	х	х	0	0	0	-
127236	\checkmark	\checkmark	х	23	47	0	、 、
127252	\checkmark	х	\checkmark	44	29	-15	[
*127253	\checkmark	х	\checkmark	0	0	0	
127254		х	\checkmark	30	75	10	
127256	\checkmark	х	\checkmark	х	х	х	
127723	\checkmark	х	х	28	0	-14	
*127953	weak	Δ Pb	∆ Pb	∆ Pb	Λ Pb	Δ Pb	
*127957		х	\checkmark	43	43	14	
128032	\checkmark	\checkmark	\checkmark	4	20	0	
128033	\checkmark	\checkmark	\checkmark	7	25	11	
128600	$\sqrt{\sqrt{\sqrt{1}}}$	∆ Pb	∆ Pb	∆ Pb	Λ Pb	∆ Pb	
128606	$\sqrt{\sqrt{\sqrt{1}}}$	∆ Pb	∆ Pb	∆ Pb	Λ Pb	∆ Pb	
*128729		∆ Pb	∆ Pb	∆ Pb	∆ Pb	∆ Pb	
128820	√x	\checkmark	х	49	33	-20	
128852		∆ Pb	∆ Pb	∆ Pb	Λ Pb	∆ Pb	
128857		Х	\checkmark	33	73	-55	
128893		Δ Pb	∆ Pb	∆ Pb	Λ Pb	∆ Pb	
*128895	$\sqrt{}$	Х	Х	12	29	0	
128897	$\sqrt{}$			33	15	0	
128931		Δ Pb	Δ Pb	Δ Pb	Δ Pb	∆ Pb	
132340	\checkmark	х	х	25	24	17	
132800		Х	Х	29	19	7	

% Change @ R~130 cm

NSTX

Does HEF Drive Changes in T_i or v_{Φ} Profiles?

- Plots show broadening of $T_i(r)$ and v_{Φ} profiles measured at R_{maj} ~ 130 cm.
- Changes in $T_e(r)$ and $n_e(r)$ are difficult to quantify: e.g. $n_e(r)$ usually rising.

Summary of 'Factiods' Related to Observation of HEFs: I

High-Energy Features (HEFs)

- Observed as enhanced CX flux near the NB full energy E ~ 90 keV (i.e. does not exhibit an 'ion tail' aka HHFW heating). Not observed at the beam fractional energies.

-HEFs can 'turn-on' and 'turn-off' multiple times during a discharge, in 'counter-sync' with f < 140 kHz MHD activity and can persist for ~100 - 600 ms.

-Onset of the HEF is not 'abrupt' but exhibits a growth time of ~ 20 - 80 ms.

Not a NPA Instrumental Effect

- Not due to 'quirky' anodes because feature moves to other MCP anodes as the EIIB NPA fields are adjusted. Only observed at ~ E_b , never at $E_b/2$ or $E_b/3$.

- HEFs have been observed for mid-plane NPA sightlines in the range R_{tan} ~ 55 - 86 cm corresponding to $v_{II}/v \sim 0.7$ - 0.9 (but no horizontal or vertical scan data exist).

-No sFLIP energetic ion loss signatures are observed which also implies that the HEF flux is not due to orbit excursions into the high edge neutral density region.

Summary of 'Factiods' Related to Observation of HEFs: II

MHD Activity

- Not observed in the presence of n=1 kink modes or robust ($\delta B_{rms} > 75$ mGauss) TAE activity.

-The magnitude of the HEF flux is modulated by strong bursting MHD EPM activity, similar to other energies in the slowing down ion distribution.

-HEFs appear to coincide with the frequency down-sweeping phase of CAE activity and usually terminate at sweep reversal (i.e. ramp down of toroidal rotation, v_{ϕ}).

Discharge Parameters

- Not observed during L-mode discharges (only in H-modes).
- Not observed for $P_b < 4$ MW (even during brief P_b notches to lower power).

- Suppressed during robust LITER operation (e.g. > 50 mg/shot or at a level sufficient to suppress ELMs).

Physical Explanation of the High-Energy Feature?

(...with acknowledgments to Herb Berk and Nikolai Gorelenkov)

• The NPA is typically operated in the mid-plane with $R_{tan} \sim 60 - 80$ cm. At these settings, the NPA views passing energetic ions ($v_{II}/v \sim 0.8 \pm 0.1$) injected primarily by Source A with contributions being less from Source B and negligible from Source C (due to increasing trapped ion deposition).

• During robust TAE/Kink activity preceding the HEF, MHD-induced redistribution and/or loss causes depletion of the high-energy region of the NPA spectrum as reported in earlier work. Thus there would be a deficiency of the high energy component during the MHD active phase.

• In the TAE/Kink 'quiescent' phase, the above depletion could relax thus building the observed HEF fast ion distribution first at the NB full energy.

• A mechanism that does not absorb energy but transfers v_{perp} energy to $v_{||}$ would augment the observed HEF growth by 'pumping' Source B&C ions (more trapped) into the $v_{||}/v$ range viewed by the NPA (more passing). Could a CAE/GAE 'resonance' near the beam full energy be a driver? Could a particle 'pinch' effect exist that 'pumps' trapped ions onto passing orbits observed by the NPA?

• This 'pumping' of energetic ions toward passing orbits might also cause the observed increase in measured neutron yield and stored energy.

Future Work

Dedicated Experiment on NSTX for Exploration of the High-Energy Feature(HEF)

