Anomalous electron transport induced by multiple beam ion driven global Alfvén instabilities

N.N. Gorelenkov, E. Fredrickson, S. Kaye, R. White *PPPL, Princeton University* L. Delgado-Aparicio, D. Stutman, K. Tritz *Johns Hopkins University* A. Boozer *Columbia University*

This work supported in part by DoE contract No. DE-AC02-09CH11466

APS DPP, Atlanta, Georgia, November, 2 - 6, 2009

N.N. Gorelenkov et.al. e-transport due to GAEs

Observations on NSTX e-transport evidence

T_e flattens in NSTX H-mode shots as P_b increased

•
$$\chi_e^{PB} \ge 10 m^2/s$$
 inside $r/a \le 0.4$, while $\chi_i \sim \chi_i^{NC}$

Not caused by low-f MHD or fast ion radial distribution

- E-transport correlates with GAE activity (Global shear Alfvén Eigenmode) (Stutman, et.al. PRL'09)
- Can GAEs induce electron transport? If yes, under what conditions?

NSTX - spherical tokamak, B = 0.5T, R/a = 0.86m/0.65m, $P_{NBI} = 6MW$, $\mathscr{E}_{NBI} = 60 - 90 \, keV$.

Observations on NSTX e-transport evidence

Outline

Motivations

• Evidence of electron transport driven by NBI

2 Numerical modeling

- GAE observations and theory
- ORBIT model for e-transport
- ORBIT analysis with ideal MHD GAEs
- Parallel electric field effects

3 Discussion and Summary

- Simulation comparisons with experiments
- Projection to future reactors
- Summary

Observations on NSTX e-transport evidence

Outline

Motivations

• Evidence of electron transport driven by NBI

Numerical modeling

- GAE observations and theory
- ORBIT model for e-transport
- ORBIT analysis with ideal MHD GAEs
- Parallel electric field effects

3 Discussion and Summary

- Simulation comparisons with experiments
- Projection to future reactors
- Summary

Observations on NSTX e-transport evidence

No ETG instabilities seem to be present (due to ∇T_e)

- · Weak high-k fluctuations
- Persistent 0.5-1.1 MHz GAE/CAEs
 (Global and Compressional Aflven Eigenmodes)

(Gorelenkov et al NF 2003)

Single GAE induced β_e degradation was observed in W7 and explained (*Kolesnichenko, PRL'05*). E_{\parallel} from kinetic AW to GAE coupling is suggested to be responsible for β_e degradation.

No ETG instabilities seem to be present (due to ∇T_e)

- · Weak high-k fluctuations
- Persistent 0.5-1.1 MHz GAE/CAEs

(Global and Compressional Aflven Eigenmodes)

(Gorelenkov et al NF 2003)

Single GAE induced β_e degradation was observed in W7 and explained *(Kolesnichenko, PRL'05).* E_{\parallel} from kinetic AW to GAE coupling is suggested to be responsible for β_e degradation.

N.N. Gorelenkov et.al. e-transport due to GAEs

Observations on NSTX e-transport evidence

T_e flattening (and inferred χ_e) correlates with GAE activity

- Plasma & strong GAEs have flat $T_e(r)$, high central $\chi_e > 10 m^2/sec$
- ullet Plasma & weak GAEs have peaked ${{T}_{e}}\left(r
 ight)$, low $\chi_{e} < 10 {m^{2}}/{sec}$
- Compressional Alfvén Eigenmodes (CAEs) are also present, but localized at the edge

Observations on NSTX e-transport evidence

T_e flattening (and inferred χ_e) correlates with GAE activity

• Plasma & strong GAEs have flat $T_e(r)$, high central $\chi_e > 10m^2/sec$

- Plasma & weak GAEs have peaked $T_e(r)$, low $\chi_e < 10 m^2/sec$
- Compressional Alfvén Eigenmodes (CAEs) are also present, but localized at the edge

GAE observations and theory ORBIT model for e-transport ORBIT analysis with ideal MHD GAEs Parallel electric field effects

Outline

Motivations

• Evidence of electron transport driven by NBI

2 Numerical modeling

- GAE observations and theory
- ORBIT model for e-transport
- ORBIT analysis with ideal MHD GAEs
- Parallel electric field effects

3 Discussion and Summary

- Simulation comparisons with experiments
- Projection to future reactors
- Summary

Motivations Numerical modeling Discussion and Summary Discussion and Summary Motivations ORBIT model for e-transport ORBIT analysis with ideal MHD GAEs Parallel electric field effects

High-f GAE (Global shear AEs) instabilities were identified in NSTX

Dashed curves are GAE dispersion $\omega_{GAE} \simeq v_{A0}(m - nq_0)/q_0 R$.

GAEs in NSTX:

- observed spectrum peaks of different (m, n) modes can intersect \Rightarrow characteristic of shear AEs,
- polarization $\delta B_{\perp} > \delta B_{\parallel}$,
- GAEs are driven by fast super Alfvénic beam ions, $v_b/v_A \simeq 2-4$,
- multiple modes are often present
- damped on electrons
- at $\omega < \omega_{ci}$ no interaction with thermal ions expected to affect electrons.

(GAEs reported by Appert, et.al., Pl.Phys.1982; Mahajan.et.al. Phys.Fluids, 1983; GAEs in NSTX, N.N.Gorelenkov, E. Fredrickson, E. Belova et.al., IAEA'02, NF'03).

Motivations Numerical modeling Discussion and Summary GAE observations and theory ORBIT model for e-transport ORBIT analysis with ideal MHD GAEs Parallel electric field effects

GAEs have localized structure below each Alfvén continuum (NOVA)

Alfvén continuum radial structure GAE. n=-3 (a) 2 103 r ξ_r(a.u.) 5 GAE $\frac{\omega^2}{\omega_{A0}^2}$ 103 m=3 m--0 1.25 1.5 0 R(m) r/a $\omega_{GAE} \simeq v_{A0}(m - nq_0)/q_0 R$

Many radial modes can exist below each A-continuum line

• Frequencies are shifted downward from the continuum up to 30%.

• Theory is extended to $\omega_A(r)$ having minimum at r = 0 (Gorelenkov, NF'03)

• GAE radial mode width is $\sim m^{-1}$, dominant single *m* harmonic

 nonlinear hybrid code HYM GAE modeling confirms their experimental identification and theory (Belova, '09)

GAE observations and theory ORBIT model for e-transport ORBIT analysis with ideal MHD GAEs Parallel electric field effects

Outline

Motivations

• Evidence of electron transport driven by NBI

2 Numerical modeling

- GAE observations and theory
- ORBIT model for e-transport
- ORBIT analysis with ideal MHD GAEs
- Parallel electric field effects

3 Discussion and Summary

- Simulation comparisons with experiments
- Projection to future reactors
- Summary

Motivations Numerical modeling Discussion and Summary Parallel electric field effects

Characteristic frequencies of electron drift motion

- GAE instabilities at $f_{GAE} \sim 500 1000 kHz$, but may go higher.
- transit (passing) frequency $f_{te} = \frac{1}{2\pi} \frac{v_{\parallel}}{qR} = 1.5 MHz \ T_e = 1 keV$,
- bounce (trapped) frequency $f_{be} = \frac{1}{2\pi} \frac{v_{\perp}}{qR} \sqrt{\frac{r}{2R}} = 430 kHz$ at q = 2, R = 1m, a = 0.8m, r/a = 0.2.
- electron Coulomb scattering frequency $v_e/\omega_{ce} = 3 \times 10^{-7}$ $(\omega_{ce} = 0.7 \times 10^{11} sec^{-1})$, e-i collisions double this.
- thermal ion cyclotron frequency $f_{ci} = 3MHz$.
- GAEs are driven by Doppler shifted cyclotron resonance of beam ions $\omega k_{\parallel}v_{\parallel} \omega_{cf} = 0$.

 $f_{GAE} \sim f_{be}$ and may be $\sim f_{te}!!!$

Motivations Numerical modeling Discussion and Summary Parallel electric field effects

Characteristic frequencies of electron drift motion

- GAE instabilities at $f_{GAE} \sim 500 1000 kHz$, but may go higher.
- transit (passing) frequency $f_{te} = \frac{1}{2\pi} \frac{v_{\parallel}}{qR} = 1.5 MHz \ T_e = 1 keV$,
- bounce (trapped) frequency $f_{be} = \frac{1}{2\pi} \frac{v_{\perp}}{qR} \sqrt{\frac{r}{2R}} = 430 kHz$ at q = 2, R = 1m, a = 0.8m, r/a = 0.2.
- electron Coulomb scattering frequency $v_e/\omega_{ce} = 3 \times 10^{-7}$ $(\omega_{ce} = 0.7 \times 10^{11} sec^{-1})$, e-i collisions double this.
- thermal ion cyclotron frequency $f_{ci} = 3MHz$.
- GAEs are driven by Doppler shifted cyclotron resonance of beam ions $\omega k_{\parallel}v_{\parallel} \omega_{cf} = 0$.

 $f_{GAE} \sim f_{be}$ and may be $\sim f_{te}!!!$

GAE observations and theory ORBIT model for e-transport ORBIT analysis with ideal MHD GAEs Parallel electric field effects

Employ ORBIT (White, Ph.Fl.'84) to study e-transport due to GAEs

Set up test GAE structures $\alpha = \alpha_0 e^{-m^2(r-r_0)^2/\delta r^2}.$

and $\delta B_r/B \simeq i k_{\theta} \alpha = i \alpha m/r$. Baseline case:

- $\alpha_0/R = 4 \times 10^{-4} \Rightarrow \delta B_r/B \simeq 0.5 \times 10^{-2}$ at r/a = 0.2 (mode's peak),
- up to 31 GAEs with n = 1 10, m is such that f = 500 1000 kHz observed window,
- localization is close to the center uncertainty in *q*-profile exist.

Use ORBIT for the *physics insight* into the driven e-transport

GAE observations and theory ORBIT model for e-transport ORBIT analysis with ideal MHD GAEs Parallel electric field effects

Employ ORBIT (White, Ph.Fl.'84) to study e-transport due to GAEs

Set up test GAE structures $\alpha = \alpha_0 e^{-m^2(r-r_0)^2/\delta r^2}.$

and $\delta B_r/B \simeq i k_{\theta} \alpha = i \alpha m/r$. Baseline case:

- $\alpha_0/R = 4 \times 10^{-4} \Rightarrow \delta B_r/B \simeq 0.5 \times 10^{-2}$ at r/a = 0.2 (mode's peak),
- up to 31 GAEs with n = 1 10, m is such that f = 500 1000 kHz observed window,
- localization is close to the center uncertainty in *q*-profile exist.

Use ORBIT for the physics insight into the driven e-transport

GAE observations and theory ORBIT model for e-transport ORBIT analysis with ideal MHD GAEs Parallel electric field effects

Outline

Motivations

• Evidence of electron transport driven by NBI

2 Numerical modeling

- GAE observations and theory
- ORBIT model for e-transport
- ORBIT analysis with ideal MHD GAEs
- Parallel electric field effects

3 Discussion and Summary

- Simulation comparisons with experiments
- Projection to future reactors
- Summary

Motivations Numerical modeling Discussion and Summary Motivations ORBIT analysis with ideal MHD GAEs Parallel electric field effects

Electrons make radial excursions due to δB_r and [E $_ heta imes B$] drift

Multiple GAEs (>N = 10) introduce stochasticity in electron drift motion ω_{dr} or f_{GAE} dephase electron-GAE interaction

Motivations Numerical modeling Discussion and Summary GAE observations and theory ORBIT model for e-transport ORBIT analysis with ideal MHD GAEs Parallel electric field effects

Electrons make radial excursions due to δB_r and [E $_ heta imes B$] drift

Multiple GAEs (>N = 10) introduce stochasticity in electron drift motion ω_{dr} or f_{GAE} dephase electron-GAE interaction

GAE observations and theory ORBIT model for e-transport ORBIT analysis with ideal MHD GAEs Parallel electric field effects

Strong GAEs smears resonances with electrons

Compare phase space map of local
$$\psi$$
 deviation: $\left<\left|\psi^2-\langle\psi
ight>^2_{y^3}\right|\right>_{\Lambda y^3}$

$$lpha_0/R=4 imes 10^{-4}$$
, $v_e
eq 0$, $\chi_e\simeq 10\,m^2/s$

Take 31 modes,
$$\bar{\psi}=0.05,\ T_e=1keV$$

 $(\lambda=\mu B_0/E)$

Small amplitude GAEs

- $\bullet~$ Trapped electrons are effected by GAEs ($\lambda\simeq 1)$ in a broad energy range.
- Passing electron can resonate via $\omega (k_{\parallel} + l/qR) v_{\parallel} = 0$. (similar to Kolesnichenko, et.al, PRL'05)

• But χ_e is too small $< 1m^2/sec$.

Strong amplitude GAEs

- Pitch angle broad response to GAEs
- χ_e is larger $\sim 10 \, m^2/sec$.

Motivations Numerical modeling Discussion and Summary GAE obsets ORBIT of ORBIT a Parallal al

GAE observations and theory ORBIT model for e-transport ORBIT analysis with ideal MHD GAEs Parallel electric field effects

Strong GAEs smears resonances with electrons

Compare phase space map of local
$$\psi$$
 deviation: $\left<\left|\psi^2-\langle\psi
ight>^2_{y^3}\right|\right>_{\Lambda y^3}$

2

$$\alpha_0/R = 10^{-4}, v_e = 0, \chi_e < 1m^2/s$$

.

$$lpha_0/R=4 imes 10^{-4}$$
, $v_e
eq 0$, $\chi_e\simeq 10\,m^2/s^2$

Take 31 modes,
$$ar{\psi}=$$
 0.05, $T_e=1keV$ $(\lambda=\mu B_0/E)$

Small amplitude GAEs

- $\bullet~$ Trapped electrons are effected by GAEs ($\lambda\simeq 1)$ in a broad energy range.
- Passing electron can resonate via $\omega (k_{\parallel} + l/qR) v_{\parallel} = 0$. (similar to Kolesnichenko, et.al, PRL'05)

・ロト ・ 同ト ・ ヨト ・ 日

• But χ_e is too small $< 1m^2/sec$.

Strong amplitude GAEs

- Pitch angle broad response to GAEs
- χ_e is larger $\sim 10\,m^2/sec$.

Motivations Numerical modeling Discussion and Summary Parallel electric field effects

Use particle code ORBIT to simulate electron thermal conductivity

Load particles on one surface & Maxwellian isotropic distribution. Look for linear "diffusive" dependence of $\langle \psi^2 \rangle_v(t)$ over time $\Delta t \gg q R / v_{\parallel}, \omega_{GAE}^{-1}, \omega_{dr}.$

- introduce ambipolar potential $F_e = n_e \left(\frac{m_e}{2\pi T_e}\right)^{3/2} e^{-(\mathscr{E} + e\phi)/T_e}$
- electrons are attached to ions, $\Gamma_e = 0$, but can transfer energy
- χ_e is on the same order as D_e

$$\frac{\chi_e}{D_e} = \frac{\left\langle \mathscr{E}^2 D_e \right\rangle}{T_e^2 \left\langle D_e \right\rangle} - \frac{\left\langle \mathscr{E} D_e \right\rangle^2}{T_e^2 \left\langle D_e \right\rangle^2}.$$

• $\chi_e = 3D_e/2$ for weakly perturbed Maxwellian

Motivations Numerical modeling Discussion and Summary Motivations ORBIT analysis with ideal MHD GAEs Parallel electric field effects

How many modes introduce stochasticity?

Baseline case $v_e/\omega_{ce}=6 imes10^{-7}$, r/a=0.245, $lpha_0/R=4 imes10^{-4}$.

If modes are incoherent characteristic time is smallest of v_{coll}^{-1} , τ_{pr} , $\tau_{transit}/(k_{\parallel}qR)$ (confirmed by numerics). Then the diffusion is $(\delta B_r/B = i\alpha m/r, k_{\parallel} \simeq 2m/qR, m = 3, \tau_{transit}^{-1} = 1.5 (v_{\parallel}/v) MHz)$ $\chi_e = \xi_{re}^2 (k_{\parallel}qR) / \tau_{transit} = \frac{\delta B_r^2 qR}{k_{\parallel}B^2} / \tau_{transit} \simeq 25 \frac{v_{\parallel}}{v} m^2/s.$

This estimate gives $D\sim lpha^2$

Motivations Numerical modeling Discussion and Summary Motivations ORBIT model for e-transport ORBIT analysis with ideal MHD GAEs Parallel electric field effects

How many modes introduce stochasticity?

Baseline case $v_e/\omega_{ce} = 6 \times 10^{-7}$, r/a = 0.245, $\alpha_0/R = 4 \times 10^{-4}$.

If modes are incoherent characteristic time is smallest of v_{coll}^{-1} , τ_{pr} , $\tau_{transit}/(k_{\parallel}qR)$ (confirmed by numerics). Then the diffusion is $(\delta B_r/B = i\alpha m/r, k_{\parallel} \simeq 2m/qR, m = 3, \tau_{transit}^{-1} = 1.5 (v_{\parallel}/v) MHz)$ $\chi_e = \xi_{re}^2 (k_{\parallel}qR)/\tau_{transit} = \frac{\delta B_r^2 qR}{k_{\parallel}B^2}/\tau_{transit} \simeq 25 \frac{v_{\parallel}}{v} m^2/s.$

This estimate gives $D\sim lpha^2$

Motivations Numerical modeling Discussion and Summary Parallel electric field effects

e-transport strongly growth with GAE amplitude

Baseline case $v_e/\omega_{ce} = 6 \times 10^{-7}$ at r/a = 0.22.

- Small amplitude $\chi_e \sim \alpha^3$ (deviates from α^2).
 - Large amplitude $\chi_e \sim \alpha^6$ intoduces intermittently strong e-transport.
 - Time averaged amplitude is lower than peak amplitude, which can be above intermittent threshold.

Collisions have small effects at large amplitudes.

Motivations Numerical modeling Discussion and Summary Discussion and Summary

Radial dependence of χ_e

Peak of D(r) is near/outside the mode amplitude peak. Low-*m* modes contribute more to the diffusion. From ORBIT $\chi_e \simeq 10 m^2/sec$ diffusion we need $\alpha > 4 \times 10^{-4}$ or $\delta B_r/B > \sim 0.5 \times 10^{-2}$, $\frac{\xi_r}{R} \sim \alpha \frac{m}{k_{\parallel}r} \sim \frac{\alpha}{\epsilon} \sim 10^{-3}$ and $\langle \delta n \rangle / \langle n \rangle \simeq \xi_r/R$

GAE observations and theory ORBIT model for e-transport ORBIT analysis with ideal MHD GAEs Parallel electric field effects

Outline

Motivations

• Evidence of electron transport driven by NBI

2 Numerical modeling

- GAE observations and theory
- ORBIT model for e-transport
- ORBIT analysis with ideal MHD GAEs
- Parallel electric field effects

Discussion and Summary

- Simulation comparisons with experiments
- Projection to future reactors
- Summary

Motivations Numerical modeling Discussion and Summary GAE observations and theory ORBIT model for e-transport ORBIT analysis with ideal MHD GAEs Parallel electric field effects

Parallel electric field can strongly enhance χ_e

Baseline case, $v_e = 0$, r/a = 0.22, $\alpha_0/R = 4 \times 10^{-4}$.

• Ideal MHD GAEs: $E_{\parallel_{MHD}} = 0$,

• Finite $E_{\parallel} = -\nabla \Psi$ is computed perturbatively via the quasi-neutrality condition due to thermal ion FLR $\Psi = \phi_{MHD} \frac{b_i}{1+b_i}, b_i = \frac{k_{\perp}^2 \rho_i^2}{2},$

(日) (同) (日) (日) (日)

$$b_i \simeq 0.5 imes 10^{-4}$$
 in NSTX

• Other sources of E_{\parallel} : two fluid effects, compressibility $(\sim b_i)$, beam ions: $\Psi/\phi_{MHD} = O\left(\frac{\omega_{kie}}{\omega}, b_i\right) \simeq b_i.$

 $\chi_e \sim E_{\parallel}^2 \sim b_i^2$ at $b_i < 3 \times 10^{-4}$ $\chi_e \sim E_{\parallel} \sim b_i$ at $b_i > 3 \times 10^{-4}$ as $\tau_{\parallel}^{-1} = \left(v_{\parallel} + eE_{\parallel}\tau_{transit}/m_e\right)/2\pi qR$ Motivations Numerical modeling Discussion and Summary GAE observations and theory ORBIT model for e-transport ORBIT analysis with ideal MHD GAEs Parallel electric field effects

Parallel electric field can strongly enhance χ_e

Baseline case, $v_e = 0$, r/a = 0.22, $\alpha_0/R = 4 \times 10^{-4}$.

• Ideal MHD GAEs: $E_{\parallel_{MHD}} = 0$,

• Finite $E_{\parallel} = -\nabla \Psi$ is computed perturbatively via the quasi-neutrality condition due to thermal ion FLR $\Psi = \phi_{MHD} \frac{b_i}{1+b_i}, b_i = \frac{k_{\perp}^2 \rho_i^2}{2},$

$$b_i \simeq 0.5 imes 10^{-4}$$
 in NSTX

• Other sources of E_{\parallel} : two fluid effects, compressibility $(\sim b_i)$, beam ions: $\Psi/\phi_{MHD} = O\left(\frac{\omega_{kie}}{\omega}, b_i\right) \simeq b_i.$

$$\begin{split} \chi_e &\sim E_{\parallel}^2 \sim b_i^2 \text{ at } b_i < 3 \times 10^{-4} \\ \chi_e &\sim E_{\parallel} \sim b_i \text{ at } b_i > 3 \times 10^{-4} \text{ as } \tau_{\parallel}^{-1} = \left(v_{\parallel} + e E_{\parallel} \tau_{transit} / m_e \right) / 2 \pi q R. \end{split}$$

Motivations Numerical modeling Discussion and Summary	GAE observations and theory ORBIT model for e-transport ORBIT analysis with ideal MHD GAEs Parallel electric field effects

Origin of parallel electric fields

★ Ξ →

KAW couples to GAEs if $\omega > \omega_A$ similar to stellarator GAEs (Kolesnichenko, PRL'05). Can they exist in tokamaks? Interested in long radial MHD scale.

Origin of parallel electric fields

KAW couples to GAEs if $\omega > \omega_A$ similar to stellarator GAEs (Kolesnichenko, PRL'05). Can they exist in tokamaks? Interested in long radial MHD scale.

Motivations Numerical modeling Discussion and Summary GAE observations and theory ORBIT model for e-transport ORBIT analysis with ideal MHD GAEs Parallel electric field effects

Existence condition for GAEs coupled with KAW

Given $z^2 = (r - r_0)^2 m^2 / r_0^2 S$, $\varepsilon > 0$, $q = q_{min} / (1 - (r - r_0)^2 / w^2)$, GAE equation at $\omega > \omega_A$:

$$\lambda^{-2} \frac{\partial^4}{\partial z^4} \phi + \frac{\partial}{\partial z} \left(1 - z^2 \right) \frac{\partial}{\partial z} \phi - S \left(1 - z^2 \right) \phi + Q \phi = 0$$

Denoting $\bar{\omega} = \omega R / v_A$, $k_{00} = k_{\parallel} R_{\mid q=q_{min}}$ (Fu, et.al, PoP'06, Gorelenkov et.al, PPCF'06):

$$S = \frac{mq_{min}w^2}{r_0^2} \left(\bar{\omega} - |k_{00}|\right); \ Q \simeq \frac{w^2}{4r_0^2} \left[\frac{\alpha^2}{2} - \Delta'\alpha + \alpha\varepsilon \frac{q^2 - 1}{q^2} - \frac{\varepsilon}{2}\left(\varepsilon + 2\Delta'\right)\right].$$

hGAEs (hybrid, global/kinetic, GAE coupled to KAW) exist with $\omega > |k_{\parallel}|$ is Q > 2 (Gorelenkov, PoP'08 on RSAEs) \Rightarrow flat q-profiles, low_shear, $w > \sqrt{8R}$.

Another branch is similar to sweeping up RSAEs if the continuum has a "hump", Q > 1/4 (Berk, PRL'01) or <u>w > R less restrictive</u>.

Motivations Numerical modeling Discussion and Summary GAE observations and theory ORBIT model for e-transport ORBIT analysis with ideal MHD GAEs Parallel electric field effects

Existence condition for GAEs coupled with KAW

Given $z^2 = (r - r_0)^2 m^2 / r_0^2 S$, $\varepsilon > 0$, $q = q_{min} / (1 - (r - r_0)^2 / w^2)$, GAE equation at $\omega > \omega_A$:

$$\lambda^{-2} \frac{\partial^4}{\partial z^4} \phi + \frac{\partial}{\partial z} \left(1 - z^2 \right) \frac{\partial}{\partial z} \phi - S \left(1 - z^2 \right) \phi + Q \phi = 0$$

Denoting $\bar{\omega} = \omega R / v_A$, $k_{00} = k_{\parallel} R_{\mid q=q_{min}}$ (Fu, et.al, PoP'06, Gorelenkov et.al, PPCF'06):

$$S = \frac{mq_{min}w^2}{r_0^2} \left(\bar{\omega} - |k_{00}|\right); \ Q \simeq \frac{w^2}{4r_0^2} \left[\frac{\alpha^2}{2} - \Delta'\alpha + \alpha\varepsilon \frac{q^2 - 1}{q^2} - \frac{\varepsilon}{2}\left(\varepsilon + 2\Delta'\right)\right].$$

hGAEs (hybrid, global/kinetic, GAE coupled to KAW) exist with $\omega > |k_{\parallel}|$ is Q > 2 (Gorelenkov, PoP'08 on RSAEs) \Rightarrow flat q-profiles, low_shear, $w > \sqrt{8R}$.

Another branch is similar to sweeping up RSAEs if the continuum has a "hump", Q > 1/4 (*Berk*, *PRL*'01) or <u>w > R less restrictive</u>.

Comparison with experiments Projection to future reactors Summary

Outline

Motivations

• Evidence of electron transport driven by NBI

2 Numerical modeling

- GAE observations and theory
- ORBIT model for e-transport
- ORBIT analysis with ideal MHD GAEs
- Parallel electric field effects

Oiscussion and Summary

- Simulation comparisons with experiments
- Projection to future reactors
- Summary

Comparison with experiments Projection to future reactors Summary

GAE amplitudes in experiments vs used in the (MHD) model

High-k interferometer line averaged density fluctuation spectrum, r/a = 0.25, 10 msec averaged

Test spectrum is different from the high-k interferometer spectrum. Further studies are required to refine the simulations.

Comparison with experiments Projection to future reactors Summary

GAE amplitude spectrum in a model

- Local density fluctuation is up to 5 times higher than line averaged.
- Resulting uncertainty can lead into even bigger uncertainty in χ_e simulations.
- From ORBIT $\chi_e \simeq 10 m^2/sec$ diffusion we need $\alpha > 4 \times 10^{-4}$ or $\delta B_r/B > \sim 0.5 \times 10^{-2}$, $\frac{\xi_r}{R} \sim \alpha \frac{m}{k_{\parallel r}} \sim \frac{\alpha}{\epsilon} \sim 10^{-3}$ and $\langle \delta n \rangle / \langle n \rangle \simeq \xi_r/R$.

This is within the measured accuracy (factor 2 higher) of GAE amplitudes.

Comparison with experiments Projection to future reactors Summary

< <p>Image: A marked black

★ Ξ →

Outline

Motivations

• Evidence of electron transport driven by NBI

2 Numerical modeling

- GAE observations and theory
- ORBIT model for e-transport
- ORBIT analysis with ideal MHD GAEs
- Parallel electric field effects

3 Discussion and Summary

- Simulation comparisons with experiments
- Projection to future reactors
- Summary

Qualitatively e-transport due to GAE (other *AEs?) is expected in ST-like plasma

Essential elements of the GAE driven electron transport in NSTX

- Strongly driven modes $\gamma/\omega = 1 10\%$.
- Strong anisotropy: beams, alphas in ST.
- Large ratio $v_f/v_A = 2 4$ (ST typical).
- Weak damping.
- Multiple instabilities, $N \ge 10$
- / \Rightarrow high β_f and β_f/β_{pl} are required (STs).

Need more experimental and theoretical studies before making quantitative projections: *Mode structure, inner polarization, small scale structures.*

Qualitatively e-transport due to GAE (other *AEs?) is expected in ST-like plasma

Essential elements of the GAE driven electron transport in NSTX

- Strongly driven modes $\gamma/\omega = 1 10\%$.
- Strong anisotropy: beams, alphas in ST.
- Large ratio $v_f/v_A = 2 4$ (ST typical).
- Weak damping.
- Multiple instabilities, $N \ge 10$
- / \Rightarrow high β_f and β_f/β_{pl} are required (STs).

Need more experimental and theoretical studies before making quantitative projections: *Mode structure, inner polarization, small scale structures.*

Comparison with experiments Projection to future reactors Summary

< <p>Image: A marked black

★ Ξ →

Outline

Motivations

• Evidence of electron transport driven by NBI

2 Numerical modeling

- GAE observations and theory
- ORBIT model for e-transport
- ORBIT analysis with ideal MHD GAEs
- Parallel electric field effects

Oiscussion and Summary

- Simulation comparisons with experiments
- Projection to future reactors
- Summary

Motivations Numerical modeling Discussion and Summary Comparison with o Projection to futu Summary

Summary

- GAEs with sufficiently strong amplitudes can induce electron transport in NSTX.
- Electron transport is due to
 - $\delta B_r/B$ caused deviation from the magnetic surface for both particles
 - multiple modes introduce stochasticity in electron motion.
- overlap of electron radial motion is the mechanism of e-transport.
- comparison with high-k interferometry shows the deficit of the observed GAE amplitudes by factor of 2 to 3 required to match the lower end of the inferred electron thermal conductivity, $\chi_e = 10m^2/s$.
- E_{\parallel} coming from KAW to GAE coupling can strongly enhance radial diffusion. Need to search for E_{\parallel} effects (ρ_i^{-1} scales) in experiment.