

Supported by

Modeling Polarization of Propagating Electromagnetic Waves in NSTX

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI Princeton U Purdue U SNL Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U Maryland U** Rochester **U** Washington **U Wisconsin**

<image>

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati **CEA.** Cadarache **IPP, Jülich IPP**, Garching ASCR, Czech Rep **U** Quebec

Office of

Science

J. Zhang UCLA T. Carter, N. A. Crocker, W. A. Peebles, S. Kubota and the NSTX Research Team

51st Annual Meeting of Division of Plasma Physics American Physical Society November 2-6, 2009 Atlanta, GA

Motivation for plasma polarimetry on NSTX

- Polarimetry measures change of wave polarization caused by magnetized plasma
- Polarimetry can help equilibrium reconstruction
 - magnetic field structure
 - current distribution
- Polarimetry can potentially measure magnetic fluctuations
 - Alfvén eigenmodes
 - tearing modes

Modeling used to understand & optimize diagnostic technique

Summary of interesting results

- Experimental polarimetry scenario on NSTX is unique
- For a radial chord not at mid-plane
 - plasma central region contributes the most to Faraday rotation
 - high field region contributes the most to Cotton-Mouton effect
- Retroreflection does not cause cancellation of either effect
 - effects accumulate on inbound and outbound paths
- Real equilibria can cause complications
 - $-\vec{B}_0 \cdot d\vec{l}$ can change sign along propagation path
 - can lead to difficulty in interpreting Faraday rotation fluctuation data
- Faraday rotation & Cotton-Mouton interact with each other
 - e.g. pure Cotton-Mouton also causes polarization rotation
 - this interaction decreases with increasing microwave frequency

Experimental polarimetry scenario on NSTX is unique

- Polarimetry has long history in toroidal devices, i.e. conventional tokamak, RFP
- Spherical tokamak different from other toroidal devices
 - large edge B pitch angle (~35°) (vs. conventional tokamak)
 - large B_{TOR} variation (vs. conventional tokamak, RFP)
 - relatively weak B, $\omega_{pe} >> \omega_{ce}$ (vs. conventional tokamak)
- Operates at *f* = 288 GHz (λ~ 1 mm)
 - low f compared to historical systems
 - simpler hardware (e.g. solid state source) than higher *f*
- Radial propagation near mid-plane & retroreflection from inside wall
 - tangential & vertical chords common

WNSTX UCLA

51st APS-DPP09 – Modeling polarization of EM-wave (J. Zhang)

Faraday rotation is the rotation of linearly polarized EM-wave in a magnetized plasma

NSTX

Cotton-Mouton effect is caused by birefringence of plasma

- When a linearly polarized wave propagates perpendicular to plasma magnetic field, it can become elliptized
- Linearly polarized wave is some combination of *in-phase* X & O modes
- X & O waves propagate with different phase velocities causing elliptization of the emerging beam
 - as wave propagates, phase difference (δ) between $E_X \& E_O$ increases

6

Model calculates polarization evolution along wave path

- WKB (G. Wentzel, H.A. Kramers, and L. Brillouin) approximation used
 - plasma parameters does not vary much within a wavelength

$$\left|\overline{B}\right| \gg \left|\frac{1}{k}\frac{d\,\overline{B}}{dz}\right|, \left|n\right| \gg \left|\frac{1}{k}\frac{dn}{dz}\right|$$

Cold plasma assumed

- absorption of wave is negligible

• Ion motion ignored

 $\omega_{pe} \ll \omega$

Polarization can be represented by point on Poincaré sphere

WNSTX UCLA

Evolution of polarization in a plasma is represented by a trajectory on the Poincaré Sphere

$$\frac{d\vec{s}(z)}{dz} = \vec{\Omega}(z) \times \vec{s}(z)$$

$$\frac{d\vec{s}(z)}{dz} = \vec{\Omega}(z) \times \vec{s}(z)$$

$$\vec{\Omega} = \frac{\omega}{2c} \left(\frac{\omega_{pe}}{\omega}\right)^2 \frac{1}{\left(\frac{\omega}{\omega_{ce}}\right)^2 - 1} \left(\frac{(B_x^2 - B_y^2)/B^2}{2B_x B_y/B^2}\right)$$
Cotton-Mouton effect
$$2\left(\frac{\omega}{\omega_{ce}}\right)B_z/B$$
Faraday Rotation

- Each portion of trajectory is a rotation of *s vector* about an axis vector Ω
- Axis vector Ω depends on local plasma parameters (electron density, B-field)
- Calculations using *full NSTX equilibrium* result in the Faraday rotation & Cotton-Mouton effects *interacting* with each other to determine the final polarization state

(D) NSTX UCLA

NSTX density and magnetic field profiles used

(III) NSTX

UCLA

Central plasma contributes most to Faraday rotation

WNSTX UCLA

November 2-6, 2009, Atlanta, GA 11

High field region contributes most to Cotton-Mouton effect

WNSTX UCLA

51st APS-DPP09 – Modeling polarization of EM-wave (J. Zhang)

November 2-6, 2009, Atlanta, GA 12

Up-down asymmetry complicates interpretation of Faraday rotation fluctuation measurement

(III) NSTX UCLA

Pure Cotton-Mouton effect may also cause small rotation

- Pure Cotton-Mouton effect causes increasing phase difference (δ) between $E_X \& E_O$
- For wave other than X or O characteristic mode, it may experiencing a small polarization rotation
 - d_{FR} : change due to Faraday rotation
 - $d_{CM}: \text{ change due to Cotton-Mouton effect} \\ \frac{d\psi}{dz} = \frac{d_{FR}\psi}{dz} \frac{1}{2}\sin 2\psi \cos 2\psi \tan \delta \frac{d_{CM}\delta}{dz}$

Pure Faraday rotation decreases as *f* increases

- As microwave frequency increases, change of Faraday rotation angle decreases, approximately $\sim 1/f^2$
- Characteristic frequencies on NSTX

 $\omega_{pe} \sim 50 \text{ GHz}, \ \omega_{ce} \sim 13 \text{ GHz}$

(I) NSTX UCLA

Interaction between Faraday rotation & Cotton-Mouton effect deceases as *f* increases

- The distortion is NOT symmetric within a rotating period
- It's valid to ignore the interaction, when using far-infrared laser $(f \sim 1-2 THz)$ to measure Faraday rotation

- Experimental polarimetry scenario on NSTX is unique
- For a radial chord not at mid-plane
 - plasma central region contributes the most to Faraday rotation
 - high field region contributes the most to Cotton-Mouton effect
- Retroreflection does not cause cancellation of either effect
 - effects accumulate on inbound and outbound paths
- Real equilibria can cause complications
 - $-\vec{B}_0 \cdot d\vec{l}$ can change sign along propagation path
 - can lead to difficulty in interpreting Faraday rotation fluctuation data
- Faraday rotation & Cotton-Mouton interact with each other
 - e.g. pure Cotton-Mouton also causes polarization rotation
 - this interaction decreases with increasing microwave frequency

Future work

- Study equilibrium with chords near mid-plane (+/- 10 cm) where Faraday rotation is small
 - distinguish these two effects, to study different regions of plasma (central and high field region)
- Contrast with conventional tokamak, e.g. DIII-D, & RFP
 - expecting relatively larger distortion of Faraday rotation from Cotton-Mouton effect
- Simulating actual diagnostic system, i.e. synthetic diagnostic
- Add in magnetic fluctuations and try to identify magnetic modes
 - Alfvén eigenmodes
 - tearing modes

(D) NSTX

Abstract*

- Magnetized plasma has an anisotropic index of refraction. For propagation perpendicular to the magnetic field, this leads to polarization elliptization via the Cotton-Mouton effect. In contrast, for propagation parallel to the field, the axis of the polarization ellipse rotates: this is known as Faraday rotation. In fusion plasmas millimeter-waves typically experience a combination of these two effects. To date, little attention has been given to the evolution of polarization for radial propagation in a spherical tokamak where a much greater variation of magnetic pitch angle and field strength exists in comparison to conventional tokamaks. This work investigates the polarization modification of millimeter-waves propagating radially in the National Spherical Torus eXperiment. Typical NSTX density and magnetic field profiles are utilized. The calculations provide the basis for optimization of the performance of a planned radial chord polarimeter. Future analysis will assess the sensitivity of polarization modifications to magnetic perturbations such as Alfvén eigenmodes and tearing modes.
- *Supported by US DOE Contracts DE-FG03-99ER54527 and DE-AC02-09CH11466

Requests for electronic copy

WNSTX UCLA

Combination of CM and FR

- In fusion plasmas millimeter-waves typically experience a combination of these two effects. $d = d_{EP} + d_{CM}$
- For pure Cotton-Mouton effect:
- For pure Faraday Rotation:
- The combination:
- Or, more explicitly to show the entanglement:

$$d_{R} + d_{CM} \begin{cases} d_{CM} \alpha = 0 \\ d_{CM} \delta \neq 0 \end{cases}$$

For each is
$$\begin{cases} d_{FR} \chi = 0 \\ d_{FR} \psi \neq 0 \end{cases}$$

$$\begin{cases} d\chi = \frac{1}{2} \sin 2\psi d_{CM} \delta \\ d\psi = d_{FR} \psi - \frac{1}{2} \tan 2\chi \cos 2\psi d_{CM} \delta \\ d\psi = d_{FR} \psi - \frac{1}{2} \sin 2\psi \cos 2\psi \tan \delta d_{CM} \delta \end{cases}$$

$$d\psi = d_{FR} \psi - \frac{1}{2} \sin 2\psi \cos 2\psi \tan \delta d_{CM} \delta \\ d\delta = d_{CM} \delta - \frac{\sin 2\delta}{\tan 2\psi} d_{FR} \psi$$

NSTX profiles used (B-field decomposed to 3 directions)

WNSTX UCLA

51st APS-DPP09 – Modeling polarization of EM-wave (J. Zhang) November 2-6, 2009, Atlanta, GA 22