

Supported by

Full-Wave Codes Applied to Reflectometry Measurements of Core-Edge Turbulence in NSTX

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

S. Kubota, W.A. Peebles N.C. Crocker (UCLA) B.C. Rose (Purdue University) S.J. Zweben, T.S. Hahm (PPPL)

> 51st Annual Meeting of the Division of Plasma Physics Atlanta, GA November 2-6 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Office of

Science

Poster Content

- Abstract
- Introduction
- Description of microwave diagnostics on NSTX.
- Synthetic diagnostics using full-wave codes.
 - 2-D finite-difference time-domain (FDTD) method.
- Acceleration of the 2-D FDTD code using general-purpose computing on graphical processing units (GPGPU).
 - Results using the NVIDIA Tesla C870 GPU Computing Processing Board.
- Application to 2-D profiles and geometry on NSTX.
 - Poloidal wavenumber resolution using modeled fluctuations.
 - Comparison with the phase screen model.
- Summary and future work.

Abstract

The interpretation of turbulence properties from reflectometry measurements is often not straightforward and requires full-wave simulations using modeled turbulence and a detailed knowledge of the equilibrium profiles. On NSTX, the unique combination of reflectometry hardware (FM-CW, fixed-frequency, and correlation reflectometers) is well-suited to turbulence measurements in both core and edge plasmas. Here we report on the simulation work required to generate quantitative estimates of turbulence properties (such as turbulence levels, wave-number spectra, decorrelation times, correlation lengths, flow velocities) from these measurements. We focus on the core-edge region near the L-H transition, where the evolution of the turbulence and density profile characteristics are related to the edge transport barrier formation. Simulations will use the UCLA 1-D and 2-D FDTD full-wave codes. Recently these codes were upgraded to utilize the parallel processing capabilities of the NVIDIA C870 GPU card.

Supported by US DoE Contracts DE-FG03-99ER54527 and DE-AC02-09CH11466, and the US DoE National Undergraduate Fellowship.

Introduction

- Understanding micro-turbulence is a necessary step to controlling transport in fusion plasmas:
 - Instabilities cover a large range of wavenumbers and frequencies (GAMs, streamers, blobs, ITG, TEM, mictro-tearing, ETG).
 - Some instabilities can feed back to the modify the equilibrium profiles (density, temperature, flows, etc.).
- New microwave diagnostics on NSTX enhance our ability to make detailed turbulence and profile measurements.
 - Ultra-fast swept FMCW reflectometers coupled with new analysis techniques:
 - > Electron density profiles with 7 µs time resolution
 - > Sub-millisecond turbulence radial correlations
 - > High-k_r back-scattering
 - Poloidal correlation reflectometer:
 - > Turbulence flow
 - > Poloidal correlations
 - 8-channel fixed-frequency reflectometers (available for FY2010):
 - > Detailed profile of turbulence fluctuation level
- Full-wave codes (used as synthetic diagnostics) are necessary to determine the instrument response for each system and technique.

Millimeter-Wave Diagnostics for 2009 Campaign

Radial & Poloidal Correlation Reflectometers

APS-DPP09 – Full-Wave Codes Applied to Reflectometry Measurements of Core-Edge Turbulence in NSTX (Kubota)

Upgraded FMCW Reflectometer (t_{sweep} <7 μ s)

November 2-6, 2009

Why Are Full-Wave Codes Necessary?

- Electron density (and magnetic) fluctuations influence the forward and backward propagating beams:
 - Forward scattering
 - Backward scattering
 - Beam refraction
 - Cross-polarization effects
- Destructive interference at the receive antenna:
 - Amplitude modulation
 - Phase corruption
 - Doppler shifts
- Codes and models exist to evaluate some of these effects:
 - 1-D full-wave codes for scattering along beam path by radial wavenumbers
 - Models for 2-D diffraction effects (phase screen model) by poloidal wavenumbers
 - 3-D geometric optics codes for beam propagation, refraction and polarization
- 2-D full-wave codes can reproduce all of these effects:
 - Need a time-domain "Maxwell" solver to reproduce everything.

2-D Finite-Difference Time-Domain Code

UCLA 2-D FDTD Code

- TE_v(X-mode), TM_v(O-mode), TEM_v (O- & X-mode, R- & L- wave) versions
- J-E convolution method for current update equations
- Low-order (central difference) scheme used here
- Convolutional PML (perfectly-matched layer) boundary conditions
- TF/SF (total-field/scattered-field) formulation for source excitation (2-D Gaussian beam)
- Originally based on Microwave Diagnostic Simulator code by H. Hojo

APS-DPP09 – Full-Wave Codes Applied to Reflectometry Measurements of Core-Edge Turbulence in NSTX (Kubota)

2-D Equations for Cold Plasma

• Reduction to 2-D scalar equations assuming d/dy=0:

$$\frac{\partial B_x}{\partial t} = \frac{\partial E_y}{\partial z} \qquad \qquad \frac{\partial E_x}{\partial t} = -\frac{\partial B_y}{\partial z} - J_x$$

$$\frac{\partial B_y}{\partial t} = -\left(\frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x}\right) \qquad \qquad \frac{\partial E_y}{\partial t} = \left(\frac{\partial B_x}{\partial z} - \frac{\partial B_z}{\partial x}\right) - J_y$$

$$\frac{\partial B_z}{\partial t} = -\frac{\partial E_y}{\partial x} \qquad \qquad \frac{\partial E_z}{\partial t} = \frac{\partial B_y}{\partial x} - J_z$$

$$\frac{\partial J_x}{\partial t} = -\nu J_x + fE_x + \alpha J_z b_y - \alpha J_y b_z$$

$$\frac{\partial J_y}{\partial t} = -\nu J_x + fE_x + \alpha J_z b_y - \alpha J_y b_z$$

 $\frac{\partial \partial y}{\partial t} = -\nu J_y + fE_y - \alpha J_z b_x + \alpha J_x b_z$

 $\frac{\partial J_z}{\partial t} = -\nu J_z + fE_z - \alpha J_x b_y + \alpha J_y b_x$

Further assumption of $b_x = b_z = 0$ allows decomposition into two sets of equations for TE_y (X-mode) and TM_y (O-mode). TEM_y (O-, X-modes, R- and L-waves) version of code includes all equations and terms.

NSTX

Computational Flow Chart

Beam Scattering Due To Turbulence

- 68 minutes required on a single CPU core for each simulation run
 - To look at statistical properties of scattered signal we need hundreds of runs for each ensemble.
 - Need to reduce computation time dramatically. Soln: GPU-assisted computing

GPGPU Programming

- General-purpose computing on graphics processing units (GPGPU)
 - Utilizes massively parallel architecture of GPU cards
- Examples below with NVIDIA Tesla C870 GPU Computing Board
 - 128 streaming processor cores (16 multiprocessors)
 - Memory size: 1536 MB
 - Double wide, PCI Express x16
 - Power requirement: 171 Watts
 - Compute capability 1.0
- CUDA for C programming environment
 - Wrapper program in IDL for loading inputs
 - Shared library for compiled kernel programs called from IDL
- Significant acceleration of computation speed
 - x20 acceleration for typical X-mode computation
 - x15 acceleration for typical O-mode computation
- Further details in Poster JP8.00017 "GPU-Accelerated FDTD Full-Wave Codes for Reflectometry Simulations", B. C. Rose et al.

GPGPU Architecture

NSTX APS-DPP09 – Full-Wave Cod

APS-DPP09 – Full-Wave Codes Applied to Reflectometry Measurements of Core-Edge Turbulence in NSTX (Kubota)

Computation Hardware

• Hardware

- Host system: Dell T7500n Desktop Workstation
- CPU: Dual Quad-Core Intel Xeon E5530 2.4 GHz
- Memory: 12 GB DDR 1066 MHz ECC
- NVIDIA Tesla C870 GPU Computing Processing Board
- Software
 - Red Hat Enterprise Linux WS v5.3 (64-bit)
 - GCC 4.1.2
 - CUDA 2.3 for Linux

Future of GPGPU Computing

- GPU computing is necessary for high performance computing
 - CPU's: diminishing returns in computing performance per transistor number
 - GPU's scaling well beyond Moore's law in performance

- Next generation GPU architecture from NVIDIA: "Fermi"
 - Expected to arrive in Q1 2010
 - Estimated acceleration over CPU: x100?
 - 6 GB of memory: 3-D geometries possible?

Fluctuation Model for k_{θ} Response

• Fluctuation Model:

(D) NSTX

- Time-varying sinusoids with the following spatial structure (max 1% fluctuation):

$$\frac{\delta n(r,\theta)}{n} = 0.01 \cos(k_{\theta} R_{c} \theta) \exp\left[-\frac{(r-r_{0})^{2}}{\Delta r^{2}}\right]$$

- > Poloidal wavenumber: $k_{ heta}$
- > Cutoff surface curvature: $R_{
 m c}$
- > Poloidal coordinate: θ
- > Radial coordinate: r
- > Cutoff radius: r_0
- > Perturbation scale length: Δr

Simulation Results for k_{θ} Scan

- ~2 days using single GPU
 - Approximately 800 individual runs.
- Monotonic k spectral response

Comparison With Phase Screen Model

(D) NSTX

Rmid Cutoff: Cutoff surface mapped to midplane radius.

rw: Distance along bisector from cutoff to horns.zw: Vertical horn offset from bisector.zs: Upward shift of contour circles.w(z): G.B. width at cutoff.R: Beam radius of curvature at cutoff.

Rz: Plasma radius of curvature (poloidal) Rx: Plasma radius of curvature (toroidal) theta: Launch angle from horizontal.

Frequency [GHz]	Rmid Cutoff [cr	m] rw [cm] zw [c	cm] zs [c	:m]
30.000000	146.19633	26.6367	41 2.3395	5906 -13.04	0540
35.000000	139.57169	33.9404	84 2.3677	7450 -12.84	6563
40.000000	125.65396	48.4791	60 2.4003	3493 -12.91	0556
Frequency [GHz]	w(z) [cm]	R [cm]	Rz [cm]	Rx [cm]	theta [deg]
30.000000	3.5300755	30.763628	88.977955	146.96559	2.0920282
35.000000	3.8504259	38.140340	79.333656	140.45998	2.0920282
40.000000	4.7817685	52.094388	59.794524	126.80483	2.0920282

Phase Screen Results

- Strong Doppler enhancement due to large misalignment.
 - Plasma center shifted downard ~10 cm.

Summary

- Significant speed-up of 2-D full-wave reflectometry codes by using GPUassisted computing:
 - x15-20 acceleration
 - Computation run time of a few minutes instead of hours
- Reflectometer response for k_θ scans using antennas 9 and 10 and equilibrium from NSTX shot 135043
 - Initial batch of ~800 runs (2-days)
 - 30, 35 and 40 GHz cases
 - Fluctuation model with various k_r to k_{θ} ratios
- Simple comparison with phase screen model
 - Phase screen model shows strong Doppler enhancement due to large plasma shift
 - 2-D full wave results show no Doppler enhancement

Future Work (Code Applications)

- Continue evaluation of reflectometer response to turbulence
 - Map out response to radial wavenumbers
 - > Vary radial correlation lengths and fluctuation level
 - Apply code to modeled 2-D turbulence targets
 - Target simulation results from BOUT (edge turbulence) and GTC (core turbulence)
 - > Connection between experiment and theory
- Time-varying sources
 - Broadband and pulsed waveforms
 - > Synthetic diagnostic for FMCW reflectometers
- Time-varying targets
 - Poloidal correlation measurements
 - > Poloidal correlation lengths and flows
 - Doppler reflectometry studies
- Application to other diagnostics
 - UCLA polarimeter available FY2010
 - > 2-D (or 3-D) version of code can be used to evaluate Faraday rotation, Cotton-Mouton and other effects. Can include full physics and fluctuations.
 - Forward, far-forward, and backward scattering methods

Future Work (Code Enhancements)

- 2-D TEM_v coupled full-wave code for the GPU
 - Effects due to magnetic fluctuations and shear (mode conversion, etc.)
 - Application to polarimetry
- Include kinetic modifications to handle relativistic effects in warm or hot plasmas
 - Trivial approximations for decoupled 2-D cases
 - 2-D coupled case not trivial. Vlasov-Maxwell equations
- Extension from to 3-D
 - More realistic estimate of beam propagation, power flow, polarization change, etc.
 - Reasonable computation times may be achievable in near future
- Next generation GPGPU board "Fermi"

Sign Up for Electronic Copy

NVIDIA Tesla C870 GPU Computing Board

- GPU
 - 128 streaming processor cores
 - Core processor clock speed: 1.35 GHz
 - Voltage: 1.3 V +/- 0.13 V
 - Dimensions: 42.5mm x 42.5mm (1449 FCBGA)
- Board
 - 12 layer printed circuit board
 - PCI Express x16 Generation 1 system interface
 - Power: 170.9 W
- Memory
 - Memory size: 1536 MB (24 16Mx32 GDDR3 136-pin BGA SDRAM)
 - Memory clock: 800 MHz
 - Interface: 384-bit GDDR3
- Bios
 - Serial ROM, 128 K x 8

