Study of boundary diffusion via density fluctuation measurement using the FIReTIP system on NSTX*

K.C. Lee¹, C.W. Domier¹, M. Johnson¹, W.-C. Tsai¹, N.C. Luhmann, Jr.¹, H.K. Park², B.P. LeBlanc³, R.E. Bell³, R. Kaita³, S.A. Sabbagh⁴

> ¹UC Davis, ²POSTECH, ³PPPL, ⁴Columbia University

NSTX Research Team

APS DPP meeting Nov.2009

<u>Abstract</u>

The Far Infra Red Tangential Interferometry/Polarimetry (FIReTIP) system on the National Spherical Torus Experiment (NSTX) measured boundary density fluctuations with upgraded time resolution up to 3.3 MHz in 2009. The density fluctuation level compared with the energy confinement from EFIT showed agreement with the turbulence induced diffusion coefficient which was recently introduced [1]. According to the gyrocenter shift theory, the plasma diffusion at the boundary is dependent on the density fluctuation level and the density fluctuation level is dependent on the Reynolds number of the poloidal ion gyrocenter drift arising from collisions with boundary neutrals. FIReTIP density fluctuation data are also compared with various plasma parameters which determine the Reynolds number such as the radial electric field and plasma temperature in the vicinity of separatrix for the study of the L\H transition mechanism.

[1] K. C. Lee, Plasma Phys. Control. Fusion, Vol. 51, 065023 (2009)

*This work is supported by U.S. Department of Energy Grant Nos DE-FG02-99ER54518, DE-AC02-09CH11466 and DE-AC05-00OR22725.

Abstract of [K.C. Lee, PPCF, 51, 065023, 2009]

momentum exchange of ion-neutral collision (charge exchange) is an important source of radial current \rightarrow explanation of E_r formation

turbulence mixture of plasma and neutral forms microscopic \tilde{E}_{xB} flow \tilde{E}_{xB} flow : cross field circulation \rightarrow explanation of turbulence diffusion

poloidal flow (velocity: v^{*}) of ion induces friction with stationary neutrals high v^{*} \rightarrow high Reynolds number \rightarrow turbulence \rightarrow L-mode low v^{*} \rightarrow low Reynolds number \rightarrow laminar flow \rightarrow H-mode

Gyrocenter shift due to charge exchange

Introduction to gyrocenter shift momentum exchange of ion-neutral collisions $\rightarrow J_r$ (charge exchange / elastic scattering) $J \times B = n_i V_{i-n} S_i^m$ $J_r^{GCS} = \frac{n_i \sigma_{cx} v_{i\perp} n_n}{B} m_i \left(\frac{E}{B} - \frac{1}{eB} \frac{\nabla P_i}{n_i} + \frac{kT_i}{eB} \frac{\nabla n_n}{n_n}\right)$ J_r n_n plasma $v_{E\times B} = \frac{E}{E}$ B neutral $n_n(x)$ ∂P_i $v_D =$ $eBn_i \partial r$ ExB drift is in opposite direction ion = return current (E_r saturation) gyro-motion -r, ₿⊙ $\boldsymbol{v}_{av}^{*} = \frac{\boldsymbol{\sigma}_{cx}\boldsymbol{v}_{i\perp}\oint \vec{\boldsymbol{v}}_{i\perp}(\boldsymbol{\theta})\boldsymbol{n}_{n}(\boldsymbol{\theta})d\boldsymbol{\theta}}{\boldsymbol{\sigma}_{cx}\boldsymbol{v}_{i\perp}\oint \boldsymbol{n}_{n}(\boldsymbol{\theta})d\boldsymbol{\theta}} = \boxed{\frac{1}{2}r_{Li}\boldsymbol{v}_{i\perp}\frac{1}{n_{n}}\frac{\partial \boldsymbol{n}_{n}}{\partial r}}$

$$J_r^{GCS} = en_i \frac{r_{Li}}{\lambda_{i-n}} \left(\frac{E}{B} - \frac{1}{eB} \frac{\nabla P_i}{n_i} + \frac{kT_i}{eB} \frac{\nabla n_n}{n_n}\right)$$

► J_r and E_r saturate before $J_r=0$

 E_r saturates when ion movement is same as electron movement (ambipolar electric field

=> classical diffusion)

- only for ideal case of no density fluctuation
- turbulence induces real condition of E_r saturation

Turbulence induced diffusion and E_r saturation condition of GCS

⇒:V _{ĔxB}	$A = n(x) = n(x+\lambda)$ $(x+\lambda)$ $(x+\lambda)$ $(x+\lambda)$ $(x+\lambda)$ $(x+\lambda)$ $(x+\lambda)$	Turbulence induced diffusion of particles
	$ \begin{array}{c c} \hline & & & \\ \hline \end{array} \\ \hline & & \\ \hline & & \\ \hline & & & \\ \hline \end{array} \\ \hline \hline \\ \hline \hline \hline \\ \hline $	$\eta \equiv \frac{\widetilde{n}}{n}, n' \equiv \frac{\partial n}{\partial x} < 0$
	X	$x + \lambda_t$
[A]	$n_{i,e}(x) \equiv n_{i,e}$	$n_{i,e}(x+\lambda_t) = n_{i,e} + \lambda_t n'_{i,e}$
[B]	$n_{i,e} - \eta n_{i,e}$	$n_{i,e} + \lambda_t n'_{i,e} + \eta n_{i,e}$
[C]	$ \begin{array}{l} n_{i,e} - \eta n_{i,e} + \eta n_{i,e} + \eta \lambda_t n_{i,e}' + \eta^2 n_{i,e} \\ \approx n_{i,e} + \eta \lambda_t n_{i,e}' = n_{i,e}(x) + \eta \lambda_t n_{i,e}' \end{array} $	$ \begin{array}{l} n_{i,e} + \lambda_t n'_{i,e} + \eta n_{i,e} - \eta n_{i,e} - \eta \lambda_t n'_{i,e} - \eta^2 n_{i,e} \\ \approx n_{i,e} + \lambda_t n'_{i,e} - \eta \lambda_t n'_{i,e} = n_{i,e} (x + \lambda_t) + \eta \lambda_t n'_{i,e} \end{array} $

► net movement of one cycle is $\eta \lambda_t \nabla n$: same result from L-R-L and R-L-R cycles

diffusion takes place from high density region to low density region

-

⇒:V _{ĔxB}	$A (n(x) n(x+\lambda))$ $T = \frac{n}{1+} + \frac{n}{1+} $	Turbulence induced diffusion of charge
/	$ \begin{array}{c} & & \\ \hline \\ \hline$	$\eta \equiv \frac{\widetilde{n}}{n}, n' \equiv \frac{\partial n}{\partial x} < 0$
	X	$X + \lambda_t$
[A]	$\rho(x) = e(n_i - n_e) \equiv \rho$	$\rho(x+\lambda_t) = \rho + \lambda_t e(n'_i - n'_e)$
[B]	$ ho - \eta ho$	$\rho + \lambda_t e(n'_i - n'_e) + \eta \rho$
[C]	$\rho(x) + \eta \lambda_t e(n'_i - n'_e)$	$\rho(x+\lambda_t) - \eta \lambda_t e(n'_i - n'_e)$

► turbulence induced ion and electron diffusion : $\eta \lambda_t \nabla n$

- turbulence induced charge diffusion : $-\eta \lambda_t \nabla \rho$
 - ions and electrons move toward boundary => <u>diffusion</u>
 - charge (ρ) moves toward core => <u>dilution current =></u> <u>Saturation by J^{GCS}</u>

Modified Boltzmann relation

$$F = J_i^{GCS} \times B = m_i n_i V_{i-n} \left(\frac{\tilde{E}}{B} - \frac{1}{eB} \frac{\nabla P_i}{n_i} + \frac{kT_i}{eB} \frac{\nabla n_n}{n_n}\right) \approx 0$$

[Ritz, TEXT, 1989]

$$E E n_i E T_n = E n_n$$

$$e \tilde{E} - kT_i \frac{\nabla n_i}{n_i} + kT_i \frac{\nabla n_n}{n_n} \approx 0$$

$$\left(-\frac{\nabla n_n}{n_n} \approx \frac{1}{L_n}\right)$$

$$\frac{e \tilde{E}}{kT_i} - \frac{1}{L_n} = \frac{\nabla n_i}{n_i}$$

$$\frac{\tilde{n}}{n_i} = \frac{e \tilde{E} \lambda_i}{2kT_i} - \frac{\lambda_i}{2L_n}$$

$$D = \frac{2}{\pi} \eta (\eta + \frac{\lambda_t}{2L_{\tilde{n}}}) \frac{kT_i}{eB}$$

L/H transition by critical Reynolds number

$$\operatorname{Re} = \frac{2}{\pi} \eta^2 \frac{B}{m_i n_i (\sigma_{i-n} n_n)^2 v_{\perp}} \nabla \rho$$

Re > Re* : turbulent flow Re < Re* : laminar flow</p>

(Re*~2400)

- turbulent flow (L-mode): high η laminar flow (H-mode): low η
- plasma heating & neutrals
 => Reynolds number
 => L/H power threshold
- P_{th} dependence on neutral density , <u>isotopes</u>
 agrees with experiments

fast and slow changes of H-mode transition

$$\operatorname{Re} = \frac{2}{\pi} \eta^2 \frac{B}{m_i n_i (\sigma_{i-n} n_n)^2 v_{\perp}} \nabla \rho$$

Isotopes difference in H-mode access by GCS

(Re -> Re*~2400)

Analysis of T_e & n_e profile changes at L/H transition

ullet after L/H transition n_e profile significantly steepens but T_e profile remains unchanged

<= confinement increase by reduction of turbulence diffusion (convective transport)

around separatrix T_e even decreases after transition <= cooling by neutrals
 : keeping H-mode with decreased T_e <= H-mode bifurcation not by T_e but Re

Reynolds number study for NSTX

similar case of #135042 (T_e, n_e)

 neutral density profile is assumed based on the measurement of SOL region : assumed same for L-mode and H-mode for convenience

Reynolds number calculated from

$$\operatorname{Re} = \frac{eB}{kT_i} \lambda_{i-n} \upsilon^*$$

typical values of v* are assumed;
 L-mode : v* ~1000 m/sec
 H-mode : v* ~ 50 m/sec

 Reynolds number calculation of Hmode case results below Re* (laminar)

• NSTX FIReTIP density fluctuation measurement showed agreement with GCS theory for the EFIT confinement time dependence on density fluctuation

- : lower density fluctuation case close to Diffusion by conventional Boltzmann relation higher density fluctuation case close to Diffusion by modified Boltzmann relation
- if the typical values of v* are assumed as L-mode :~1000 m/sec and H-mode : ~50m/sec, calculated Reynolds numbers for NSTX #135042 crosses the critical Reynolds number
- NSTX Reynolds number study with measured E_r profile will be performed when poloidal CHERS is available
- NSTX Reynolds number study with poloidal flow velocity from GPI data is available