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ABSTRACT

Fast wave research on NSTX is directed toward understanding the coupling of
some RF power to edge loss processes. These losses are driven in the vicinity
of the antenna as opposed to resulting from multi-pass edge damping. PDI
edge losses through ion-electron collisions and direct energetic ion losses
appear to be significant, the latter possibly causing clamping of the edge
rotation. Deuterium H-mode heating studies reveal that core heating is
degraded at lower k, (- 8 m™ relative to 13 m™) as for the L-mode case at
elevated edge density, consistent with edge wave damping depending on the
location of the onset density (n,..>* B*k*/w) relative to the position of the
antenna. Fast visible camera images clearly indicate that a major fast wave
edge loss process is occurring from the plasma scrape off layer (SOL) in the
vicinity of the antenna and along the magnetic field lines to the lower outer
divertor plate. Large type | ELMs, which are observed at both k; values, appear
after antenna arcs caused by precursor blobs, low level ELMs, or possibly dust.
For large ELMs without arcs, the source reflection coefficients rise on a 0.1 ms
time scale, suggesting that this rise time might be used to discriminate between
ELMs and arcs.

Work supported by USDOE Contract No. DE-AC02-09CH11466. 2



Need to maximize RF power coupling to core plasma
and minimize power coupling to the edge plasma

Outline:
* L-mode coupling
— Fast wave edge losses
— PDI produced energetic ion losses

* H-mode coupling
— Fast wave edge losses

— Losses in scrapeoff region to the outer divertor scrape off
zone — heated region dependence on magnetic field pitch
and wavenumber

— Coupling with type | ELMs

— Arc detection in the presence of large ELMs using the
derivatives of the reflection coefficients



NSTX HHFW antenna has well defined spectrum, ideal

ying dependence of heating on antenna phase
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Strong “single pass” absorption ideal for studying
competition between core heating and edge power loss
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« Edge power loss occurs in the vicinity of the antenna -- there is ho multi-pass damping



Edge power loss Increases when perpendicular
propagation onset density is near antenna/wall

50 120742 120740 ¢ AWe at = 8 m-1 and 14 m-1
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—ee -8 m a ! RF pulses with low edge density

* AW, at - 8 m" about half AW,
at 14 m" for the first pulse with
large edge density

» Edge density affects heating
when above onset density close
to antenna, consistent with
surface wave propagation near
antenna/wall contributing to RF
losses

> N

OCB*kHZ/(D

onset

|
0.1 0.2 0.3 0.4 0.5
Time (sec)



RF-induced increase in stored energy maintained at
low edge density in Helium and Deuterium plasmas

P:~ 1.8 MW in He-4 plasmas
(~ 80 ms duration)
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 Fall off occurs when edge density exceeds onset density for perpendicular

propagation of fast wave

» First measured increase in deuterium at -30° degrees (lithium injection)

* Very little heating at -30° in deuterium at elevated edge density



HHFW heating for -90° current drive phasing is
greatly improved at low edge density

a) Helium b) Deuterium
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* T.(0) of ~ 5 keV produced to support high k scattering study of small scale

turbulence (ETG mode?) in He and D, (see G. Taylor at this conference)




Edge loss mechanisms need to be identified
experimentally and included in advanced RF codes

> Searching for edge RF power loss processes on NSTX:

Fast wave losses for propagating and reactive fields
— associated sheath and collision effects

PDI effects
— previously losses estimated at approximately 16% — 23%

through collisional coupling of energetic ions to edge electrons
[T. Biewer et al, Physics of Plasmas 12 (2005) 056108]

— energetic ion losses

« Non-toroidally symmetric, localized losses

There may be other important edge loss mechanisms



PDI heating in plasma edge may eject energetic ions

ERD Diagnostic: ¢, =-30° Time = 0.44 sec Roo = 150.0 cm, Ry, = 150.7 cm
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» Edge ions are heated to hundreds of eV: ClIll, CVI, Lill, and Helium
« Emission location for Clll and CVI is ~ 150 cm, just inside separatrix
« Edge ion heating may result in loss of energetic ions to SOL and the divertor region
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Edge toroidal velocity appears to be locked when
the RF is on with the NB pulse

40 ms beam pulse RF turned off at 30 ms durlng beam pulse
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« Mechanism causing this edge effect not understood, but may point to edge ion loss
* RF apparently provides a drag on core plasma rotation as well
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Edge toroidal velocity level decreases with phase as
edge ion energy increases
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Initial H-mode experiments show heating
dependence on k, similar to that for L-mode

Degradation of heating at -90° (k, = -8 m-1) relative to that at -150° (K,
=-13 m)
Major edge power loss channel observed

— Losses from SOL in front of antenna to the outer divertor plate linked
along the magnetic field lines

Strong edge pressure gradient appears to lead to large type | ELMs at
both antenna phases
— Arcs occur prior to excursion of divertor D, ., light in both cases

Study of coupling to ELMing H-modes begun

— Heated divertor zone location depends on magnetic field pitch and
somewhat on phase

Arcs are not due to increase in reflection coefficient by ELM
— Can power RF through an ELM in the absence of an arc

— Time derivative of reflection coefficient can be used to discriminate
between ELMs and arcs

13



Heating of H-mode plasmas is less efficient at lower
antenna phase/lower k;

Electron Pressure
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* Tawiot ~ 20 Ms gives 1 ~ 66%, 40% for -150°, -90° antenna phasings
* Pxg losses coupled to edge are ~ 0.7MW, 1.1 MW for -150°, -90°
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Fast waves propagating in the SOL are heating the
tiles on the outer divertor plate

Pee ~ 1.8 MW, Pz =2 MW, I, =1 MA, B;=55kG

Edge Prp , Edge Pre

deposition | deposition

/
e,

0.353 sec 130621 B 130608 -0.250 sec

» “Hot region is much more pronounced at -90° than at -150°
- Edge power loss is probably greater at -90°
- Also, suggests fields move away from wall at -150° along with the onset
density
» Time for “hot” spot to decay away is ~ 20 ms at -90° and ~ 8 ms at -150°
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Infrared measurements show significant RF power
deposition in the hot zones

Visible Camera with Subtraction
Shot 130621 (0.41562 s - 0.43762 s)

Edge outer divertor plate —>

Infrared Measured Heat Fqu
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RF Hot zone
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* |IR results indicate several hundreds of kW deposited on outer divertor plate
« Deposition for -90° farther out along with onset density
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RF arc occurs just prior to the type | ELM for both
antenna phases

Phase = - 90° just prior to arc before ELM Phase = - 150° just prior to arc before ELM

3 shot130621 - pulse expanded 3 shot[130608 - pulse expanded
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- RF is off prior to rise in divertor D, signal for ELM
* Need to look for precursors that cause arc in antenna
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Soft X ray, D, mid and MHD signals are best
indicators of early ELM phase
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* Precursors are apparent on all three signals

» Possible causes of arc are plasma from pre-ELM or blob, and possibly
dust (sputtered material) entering the antenna box
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Type 1 ELMs can occur after removal of RF power
(arc or cutoff)

5 -1 5|O° case
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Ejection of material from antenna surfaces appears to
be the cause of the arcs during RF plasma operation

Start of plasma conditioning at Heating after plasma conditioning with
Prr = 0.5 MW —no antenna arc Prr = 2.7 MW (He, B, = 0.53T)
.../2009/Phantorn_2008 /NSTX_135232.cin at 170.569 ms 3 e R T T
135260 P
Per | )
MW -
2 |-
nelL
(1eo1gm-2)
1+
WmHD
(MJ/I10) [ Ip

TIME (sec)

« Lithium sputtering from outside of antenna enclosures and BN limiters can cause
arcs if material (dust) enters faraday shield enclosure

 RF power is not limited by RF voltage on antenna but the limit appears to be an
induced RF current effect — i.e, an RF current limit

* After plasma conditioning to high power, Pk up to 3.7 MW has been sustained
without arcs — example shown above for Pge = 2.7 MW = T_(0) upto 6.2 keV



Study of RF heating of the outer divertor plates versus
magnetic field pitch and antenna phase

« ELMing discharges studied for da = -90° discharge parameters
I, = 0.8 MA, Pyg = 2 MW versus: 6 Mo 1.2
By =4.5k
B¢ and ¢, Shot # a%ﬁgm-z) - Te(0)
5.5 kG -90° 135325 54 108 (ke¥)
4.5 kG 90° 135333 T ]
45 kG '1500 135337 oL D 404 DO!.
_150° WMHD . A |
5.5 kG 150° 135339 o
* Powered through ELMs without (2
rcs for th nel. |
arcs for these cases (1019m-2) (0
o . P 40.8 (keV)
* Edge power loss is increased with R, | |
higher density and ELMing activity [ ' D
( bt WMHD
0 . \ . . . 0.0
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RF heated pattern on lower divertor plate follows the
change in magnetic field pitch

/p/nstxcam /miro/2009,/Miro_135333.cin at 451.801 ms /p/nstxcam /miro /2009 /Miro_135325.¢cin at 455.093 ms

Bay G
IR view
Bay |
IR view

135325 IR | t = 255,288,355,422,455,488,522 — Time =255 ms
3| Prp=2.6 MW e - Pgp=2.6 MW — -
Q (pulse 0.25 - .46 sec)  — 419 (pulse 0.25 - .46 sec)  — 422
- 452 - 455 ]
(MW/m2) - - 486 - - 488
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1 | —
0
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Location of heat flux has small dependence on
phase at lower and upper divertor plates

from \EFITO02, Shot 135333, time=445ms
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Location of heat flux has a strong dependence on
field pitch at lower and upper divertor plates

from \EFITO02, Shot 135325, time=445ms
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antenna phase (Ip = 0.8 MA)
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Effect of large type | ELM on RF power coupled

Prp-0.5 | I —— PRF 1.4 W
(MW) (MW) OL 1 I I ] i

0.8 MHD midf even i

RHOS

(reflection P2 SIS

coeficient) 060 =~ T T
P3 4 ‘\/\/\/\’/\/\/‘

Other 04 ——

signals P4 oa b

(au)

0.0 e | XHD14™ 02 Y | |
0472  0.473 0474 0475 0476  0.477 0.472 0.474 0.476

Time (sec) Time (sec)
* Pre= 1.3 MW not tripped off with trip RHO value set to 0.7

* Two RHO peaks due to two type | ELMs are coincident with increases
in edge density (XHD14 o« n_?)

* Rise time of RHO is slow relative to that for an arc — can be used to
discriminate between arc and ELM
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Discriminating between arcs and ELMs with the time
derivative of the voltage reflection coefficient

Fast digitization parameters for source 2

5 13:6094 YRQ_1 E:ldtVRCl_1 §10-|l-5), dak., pn.et_1. t= .28.2-.292 o 13.609.4 YRC 1.ddjtVRlC 1 (1.0+.5) ll:’fwd 1. P.refI.]1 t= 2909 291
P ELM Arc ¢
(MWx4) l P
i PRF —r mn 1
Rho
o(Rho) 1} 10 dRho/ot I
ot Dy,
(109 sec-1) Rho
- ‘ - PR Rho i
ousor PN T iy J
oRho/ot
0 A .Mi. ety g 0 N
0.284 0.286 0.288 0.290 290900 + 40 + 80
Time (sec) Time (usec)

« drho/ot gives a sharp peak at an arc which is about an order of magnitude
larger than at the ELM

» Ringing in orho/dt occurs during the fall off of the power in the
transmission system after source turn off
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Major fast wave power loss observed in edge may be
important for ITER

* Good heating efficiency maintained at lower k, for lower edge density

= Suggests propagating fast wave edge loss (n o« B* k”2 [ )

e onset

» Major fast wave power loss channel observed in edge
= Losses from SOL in front of antenna to outer divertor plate linked
along magnetic field lines
» Effect could be important for ITER since wave number is relatively low
for some heating/CD scenarios:
= k, ~4 m at 53 MHz for CD phasing in ITER = n ~1.4x10"8 m3
= Divertor region sputtering has been observed at lower harmonics
[J-M. Noterdaeme et al., FED 12 (1990) 127; S. Wukitch et al., RF Conf. (2007) 75]

e onset

= Careful tailoring of edge density profile may be important in ITER

« Advanced RF codes are needed to predict edge losses for all edge fast
wave fields

= NSTX is ideal platform for benchmarking advanced models for edge
loss processes
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