

Supported by

PP8.00077: Numerical Modeling of HHFW Heating on NSTX

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT Nova Photonics New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

C.K. Phillips, R.E. Bell, J.C. Hosea, B.P. LeBlanc, G. Taylor, E.J. Valeo, J.R. Wilson *Princeton Plasma Physics Laboratory*

> L.A. Berry, E.F. Jaeger, P.M. Ryan Oak Ridge National Laboratory

P.T. Bonoli, J.C. Wright *MIT Plasma Science and Fusion Center* R.W. Harvey *CompX*

T. Brecht

UMN and the NSTX Team

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokvo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache IPP, Jülich **IPP, Garching** ASCR. Czech Rep **U** Quebec

Office of

Science

U.S. DEPARTMENT OF

FNFRGY

51th Annual Meeting of the APS Division of Plasma Physics Atlanta, GA, November 2 - 6, 2009

Overview

- Motivation:
 - Efficient rf heating and current drive required in ST devices and ITER
- Approach:
 - Utilize full wave and ray tracing codes to analyze NSTX HHFW heating and current drive experiments

Conclusions:

- Power absorption by ions depends on ion temperature and concentration, as well as $k_{\prime\prime}$
- Power deposition profiles from the AORSA and GENRAY codes are comparable, but TORIC appears to predict somewhat stronger ion damping.
- Possible mode conversion to "slow wave" evident in some NSTX parameter regimes

NSTX HHFW antenna spectrum ideal for studying dependence of heating on antenna phase

HHFW antenna extends toroidally 90°

- Phase between adjacent straps easily adjusted between 0° to 180°
- Well-defined spectrum is launched

Strong "single pass" absorption ideal for studying competition between core heating and edge power loss

antenna phase case with 101 n_{ϕ} **Plasma Cross Section** 180° at Antenna from Antenna В **Plasma** Toroidal Midplane

AORSA: $|E_{RF}|$ field amplitude for -90°

Edge power loss occurs in the vicinity of the antenna -- there is no multi-pass damping (except in low density start-up conditions)

NSTX experiments show heating efficiency depends on launched k_{||}, edge density and magnetic field

- Heating efficiency for $k_{//} = 8 \text{ m}^{-1}$ increased substantially as B_T increased from 0.45 T to 0.55T
- Core heating efficiency degrades with decreasing k_{//} in L-Mode & H-Mode Plasmas
- Edge power loss increases when density level required for perpendicular propagation is near antenna/wall

Ref: Hosea et al 2008 Phys. Plasmas 15 056104

• At this meeting, see also:

G. Taylor TI3.00002; B. LeBlanc JO4.00011; J.C. Hosea PP8.00075;T. Brecht JP8.00067

Full Wave and Ray Tracing codes are compared for NSTX HHFW experiments

The AORSA and TORIC full wave codes solve the kinetic wave equation:

$$\boldsymbol{\nabla} \times \boldsymbol{\nabla} \times \mathbf{E} - \frac{\omega^2}{c^2} \left(\mathbf{E} + \frac{i}{\omega \epsilon_0} \mathbf{J}_p \right) = i \omega \mu_0 \mathbf{J}_s \quad \textit{where} \quad \mathbf{J}_p(\mathbf{r}) = \int d\mathbf{r}' \overline{\overline{\boldsymbol{\sigma}}}(\mathbf{r}, \mathbf{r}') \cdot \mathbf{E}(r')$$

• AORSA uses a non-local, integral operator correct to "all orders" in $(k_{\perp}\rho_s > 1)$ See E.F. Jaeger et al, Phys. Plasmas 9 (2002) 1873.

• TORIC uses a quasi-local model valid to "all orders" with the Bessel functions evaluated with the local HHFW root of the hot plasma dispersion relation *See M. Brambilla, Plasma Phys. and Controlled Fus. Res. 44(2002)242*

GENRAY Ray Tracing Model uses the full hot plasma dielectric tensor to evaluate the power deposition profiles

See Smirnov A P, and Harvey R W 2003 The GENRAY Ray Tracing Code, Report CompX-2000-01, Ver. 2 March 17, 2003

Previous comparisons found good agreement for electron-absorption-dominated HHFW CD plasmas

Measured CD at k_{ϕ} =-8 m⁻¹ in shot #123435 consistent with modeling

AORSA used full antenna spectrum and Ehst-Karney approximation, including trapping effects

MSE normalized assuming 1.2 MW of HHFW power absorbed in plasma

AORSA, GENRAY and TORIC results similar for single Nphi=12 at peak of launched spectrum

Power deposition found to depend on fits to the measured electron density profile and z_{eff} profile

Three possible fits to the density profiles from Thomson Scattering in H-mod

FIT A

- Smoothed fit to ne
- Flat z_{eff} profile from VB
- H/D ratio from H α /D α spectroscopy data
- \bullet Carbon density from z_{eff} and quasineutrality

FIT B

- Higher order spline fit to ne
- Carbon profile from CHERS
- Deuterium calculated using quasineutrality
- H/D ratio from H α /D α spectroscopy data

FIT C

- Smoothed fit to ne
- Carbon profile from CHERS
- Deuterium calculated using quasineutrality
- H/D ratio from H α /D α spectroscopy data

Note that the location of the peak of the density "wing" depends on the fit

Profile shape, especially near the edge, affects power split between ions and electrons

TORIC Code Results (shot #130608 with $k_{//} \sim 7 \text{ m}^{-1}$)

The fit to the electron density, as well as the use of a radially varying z_{eff}, has a weak but noticeable effect on the power partitioning among the various plasma species.

Effects of ion temperature on power deposition examined using profiles from D₂ H-mode shot

Electron density and temperature from Thomson scattering Ion temperature and Carbon profiles from CHERS H / D ratio from H_αD_α spectroscopy Magnetic equilibrium from EFIT2

Ion absorption increases as Ti increases for lower launched k_{//}

Code	Power to:	CHERS T _i (0)~2 keV	4 X CHERS T _i (0)∼2 keV
AORSA	е	94	41.2
	D	.21	22.9
	н	5.8	35.9
GENRAY	е	96	39.2
	D	0.2	30.3
	н	3.3	28.5
	С	0.5	2.0
TORIC	е	88.9	26
	D	0.4	41.6
	н	10.7	32.4

Profiles from #130608 $f_{rf} = 30 \text{ MHz}$ $k_{//} \sim -7 \text{ m}^{-1}$ at antenna $(N_{\phi} = 12)$

AORSA and GENRAY electron – ion power partitioning are comparable GENRAY predicts more damping on D than does AORSA TORIC predicts more ion absorption than either AORSA or GENRAY

Radial power deposition profiles from codes differ in some details

Ion absorption increases as Ti increases at higher launched k_{//} ~ 13 m⁻¹

Code	Power to:	CHERS T _i (0)~2 keV	4 X CHERS T _i (0)~8 keV	
AORSA	е	99.2	80	
	D	0.1	4.8	F
	н	0.7	15.2	k
GENRAY	е	99.9	89.2	
	D	~ 0	2.6	
	н	0.2	7.8	
	С	~ 0	0.3	
TORIC	е	99.0	69.5	
	D	~ 0	11.6	
	н	~ 1	18.9	

Profiles from #130608 $\kappa_{//} \sim 13 \text{ m}^{-1} \text{ at antenna}$ $(N_{\phi} = 22)$

All three codes predict dominant electron absorption with measured Ti(0) ~ 2 keV At higher Ti, the codes predict more ion absorption, but the power splits are different between the three models

Significant RF power deposition on slowing NBI ions predicted in H-Mode plasmas, particularly at lower k₆

- Modeling does not include RF acceleration of fast ions that can enhance fast-ion population and drive ions out of plasma
- Power is deposited on electrons and fast ions, not thermal ions
- Detailed comparisons with TORIC and AORSA are underway

Short wavelength mode seen in $E_{//}$ in AORSA and TORIC simulations

Mode is localized mainly off-midplane Mode is present in simulations with high spatial resolution

The electron power absorption is higher in regions near but not on slow mode excitation

Two-dimensional electron power deposition contours for shot #130608 with 4 X CHERS for Ti profile and $k_{//} \sim -7 \text{ m}^{-1}$

Initial dispersion relation calculations indicate "slow mode" may be present in some HHFW regimes

Roots obtained with the CRF full hot plasma dispersion relation code *See Ignat and Ono Phys. Plasmas 2 (1995) 1899* Used typical NSTX parameters and k_{//} ~ 7 m⁻¹ at antenna Future work: redo with better fits to NSTX data and include effects of Bp on k_{//}

The "slow mode" has mainly E_{//} polarization

Possible "slow mode" seen in AORSA and TORIC simulations?

"Slow mode" appears to propagate between cyclotron harmonics

In dispersion relation studies, the "slow mode" root is found between cyclotron harmonics, in D-only as well in D-H plasmas The mode has a short wavelength perpendicular to B₀.

Summary and Conclusions

- Full wave and ray tracing codes provide qualitatively similar predictions for NSTX HHFW heating and current drive profiles
 - Power absorption by ions becomes significant, even with Ti(0) ~2 keV, at lower launched k_{//}
 - Consistent with earlier studies in L-mode plasmas by Rosenberg et al; Mau et al; Jaeger et al; Phillips et al; Harvey et al.
 - Also depends on relative concentrations of ion species
 - Power deposition profiles from the AORSA and GENRAY codes are comparable, but TORIC predicts somewhat stronger ion damping.
 - HHFW root finder in TORIC may need improvement
 - Possible mode conversion to "slow wave" evident in some NSTX parameter regimes
 - "Slow Mode" may be related to two short wave length, hot plasma modes that propagate between cyclotron harmonics, which were identified by Ignat and Ono [Phys. Plasmas 2 (1995)1899].