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The resistive wall mode (RWM) is disruptive; it is important
to understand the physics of its stabilization

e Motivation
— The RWM limits plasma pressure and leads to disruptions.
— Physics of RWM stabilization is key for extrapolation to:

e sustained operation of a future NBI driven, rotating ST-CTF, and
* disruption-free operation of a low rotation burning plasma (ITER).

e Qutline
— RWM experimental characteristics in NSTX

— Kinetic RWM stabilization theory: window of w,, with
weakened stability

— Comparison of theory and NSTX experimental results
— The role of energetic particles
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The RWM is identified in NSTX by a variety of observations
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— Growing signal on low frequency poloidal magnetic sensors
— Global collapse in USXR signals, with no clear phase inversion
— Causes a collapse in B and disruption of the plasma
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NSTX experimental RWM instability can not be explained by

scalar critical rotation theory
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A theoretical model broad enough in scope to explain these results is needed.
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Kinetic 8W, term in the RWM dispersion relation
provides dissipation that enables stabilization

@ Ideal theory alone @ Calculation of 6W with the
shows instability above M1 SK code includes:
the no-wall limit: — Trapped Thermal lons
S — Trapped Electrons
e =W, — Circulating Thermal lons
— Alfven Layers (analytic)
@ Dissipation enables — Trapped Energetic Particles
stabilization:
oy — i) = d}f’.fc. + iﬂ-ir'}f Typically, trapped thermal
| oWy + oWk ions account for 70-80% of
Re(6W,)

(Hu, Betti, and Manickam, PoP, 2005)

NSTX APS DPP 2009 - Kinetic Effects in RWM Stability (Berkery) November 3, 2009 6



The dependence of stability on plasma rotation is complex

Trapped lons:

K {wp) + lwy, — e + wg — wy — 2y
/ P N N
/ | \

precession drift bounce collisionality ExB

collisionality

plasma rotation

Contours of YT,

blue stable
red unstable
white marginal

@ NSTX

APS DPP 2009 - Kinetic Effects in RWM Stability (Berkery)

November 3, 2009




A window of weakened stability can be found between the
bounce and precession drift stabilizing resonances

://.—-—_._____ﬂ NSTX 121083 @ 0.475 s 3

e What causes this rotation
profile to be marginally g
stable to the RWM? 3
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A window of weakened stability can be found between the
bounce and precession drift stabilizing resonances
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* The experimentally marginally stable w, profile is in-
between the stabilizing resonances.

— Is this true for each of the widely different unstable profiles?
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A window of weakened stability can be found between the
bounce and precession drift stabilizing resonances
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* The experimentally marginally stable w, profile is in-
between the stabilizing resonances.

— Is this true for each of the widely different unstable profiles: Yes
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When the rotation is in resonance, the plasma is stable
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e Stable cases in bounce resonance at high rotation
e Stable cases in precession drift resonance at low rotation
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Full MI SK calculation shows that trapped thermal ions are
the most important contributors to stability

v, > Bo/Bmin - NSTX 121083 @ 0.475 s
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a

e Examine 6W, from each particle type vs. W
— Thermal ions are the most important contributor to stability.
— Flat areas are rational surface layers (integer g £ 0.2).

e Entire profile is important, but g > 2 contributes ~60%

— RWM eigenfunction and temperature, density gradients are
large in this region.
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The dispersion relation can be rewritten in a form
convenient for making stability diagrams

Contours of y form circles on a stability diagram of
Im(6W,) vs. Re(6W,).

oW r:,: —+ Al 'FH

(= n)Tw = =5 S > (Re(dWk) —a)* + (Im(§Wk))* =1
Vb VK

3/ """""""" <
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Scaling the experimental rotation profile illuminates the

complex relationship between rotation and stability
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Scaling the experimental rotation profile illuminates the
complex relationship between rotation and stability
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Scaling the experimental rotation profile illuminates the
complex relationship between rotation and stability
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Scaling the experimental rotation profile illuminates the
complex relationship between rotation and stability
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The weakened stability rotation gap is altered
by changing collisionality

* Scan of w, and collisionality
— scale n & T at constant 1
| |

{wp) + lwy — tveg + wg

— Changing v shifts the rotation
of weakened stability.
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[Hdd =t e et e T
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|
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The weakened stability rotation gap is altered
by changing collisionality

* Scan of w, and collisionality
— scale n & T at constant

1
Wi ~
K [(&3;_}) + lwy — é;fﬁ,ﬁ+w;_,;}

— Changing v shifts the rotation
of weakened stability.

%)

2.0

NSTX exp. instability
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Widely different experimentally marginally stable rotation
profiles each are in the gap between stabilizing resonances

— Sometimes the stability e, NSTX 121083 @ 0.475s
. . - 30 128856 @ 0.526s -
reduction is not enough to T [ 130235 @ 0.745 5
L : X 20F Tl E
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o N 3 10f RN, .
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Widely different experimentally marginally stable rotation
profiles each are in the gap between stabilizing resonances
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Present inclusion of energetic particles in M1 SK: isotropic
slowing down distribution (ex. alphas in ITER)

Thermal Particles: Maxwellian E.P.s: Slowing-down
_. (wr +i7)9L + 5L H C ()
5WK’“"‘ <m£})+zw6_i5}eﬂ’+wﬁ2_ww_i? f(tm): E%—E§

020 T
e Energetic particles add to o, v\J
OW,, lead to greater stability 015} /
e Example: a particles in ITER % Margina) /" -
G 0.10F -
— Higher B, leads to greater < | B iable _
stability [ ]
- 0.05 01 -
— Isotropic f IS a good approx. ITER Advanced Scenario 4:
By ~20% above the no-wall limit
0.00 . .
0.0 0.5 1.0 1.5
n /w¢model
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Energetic particles provide a stabilizing force that is
independent of rotation and collisionality

e
I NSTX 121083 @ 0.475 s -
3:_ i for energetic particles:
_ Q& oW, !
O K ™ —
§¥ N Real Therm. {wp) +lwp — ives +wE
o 2 L @QO. _
L small
RealEP.
g I S - .
0.0 0.5 1.0 1.5 2.0
w(b/wd)exp
— Significant Re(6W,), but nearly independent of w,,
— Energetic particles are not in mode resonance
— Effect is not energy dissipation, but rather a restoring force
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NSTX experiment in 2009 found that energetic particles
contribute linearly to RWM stability

3.0 07MA035T] ' ' '
' 0.8 MA, 0.40 T ] Change in growth rate from energetic particles

25 L 09MA 045T]
G 1.0MA, 0.50 T 0.5

2 20t , ! 0.4E NSTX discharges at P
5V y C  marginal stabilit
<9( 1.5 ;; 0.3 - g Y . . E
i C . |
& 10] S 02F :
0.5 | 0af .
0.0 [ | | | o a\‘“‘%—da 0.0 L — : : : : ! ]
0.9 17 15 0.0 0.1 0.2 0.3 0.4 0.5 0.6
R (m) Bfast/Btotal

e Despite the additional theoretical stability, these shots
experimentally went unstable

— Investigating whether stabilization from thermal particles is
overpredicted by MISK.

— The overprediction of -Ay from E.P.s is under investigation...
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A new, more accurate energetic particle distribution
function is being implemented

100~ T~~~ T injection [
e Presently fis considered | f from TRANSP i
independent of pitch angle ooee
— Not a good approximation " r/fa=0.25
for beam ions <
— Overpredicts stabilizing % 0

trapped fraction

e Towards better
guantitative agreement:

— Use f from TRANSP directly O |F— e T —
1.0 -0.5 0.0 0.5 1.0

pitch angle (v /v)
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Kinetic RWM stability theory can explain complex
relationship of marginal stability with w,,

e High plasma rotation alone is inadequate to ensure RWM
stability in future devices

— A weakened stability gap in w,, exists between w, and w;, resonances.
— Use w, control to stay away from, and active control to navigate through gap.

e Favorable comparison between NSTX experimental results

and theory

— Multiple NSTX discharges with widely different marginally stable w,, profiles fall
in this gap.

e Energetic particles provide an important stabilizing effect

— Works towards quantitative agreement with experiment is ongoing.

Visit the poster this afternoon for more detail
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Zooming in on rotation near the edge
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Kinetic RWM stability theory may explain complex
relationship of marginal stability with w,,

e High plasma rotation alone is inadequate to ensure RWM
stability in future devices

— A weakened stability gap exists between w, and wy resonances.
— Use w, control to stay away from, and active control to navigate through gap.

e Favorable comparison (w¢/wﬁ)q=2 (%)
between NSTX exp. 10.0f

results and theory

— Multiple NSTX discharges with ?Cé
different marginally stable w, =
profiles fall in this gap

e Energetic particles o1l I
provide an important 0.0 0.5 1.0 1.5 2.0

e NSTX exp. instability We/Wy™®
stabilizing effect P y e/ Yo

Visit the poster this afternoon for more detail
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Abstract

Continuous, disruption-free operation of tokamaks requires stabilization of the resistive wall
mode (RWM). Theoretically, the RWM is thought to be stabilized by energy dissipation
mechanisms that depend on plasma rotation and other parameters, with kinetic effects being
emphasized!. Experiments in NSTX show that the RWM can be destabilized in high rotation
plasmas while low rotation plasmas can be stable, which calls into question the concept of a
simple critical plasma rotation threshold for stability. The present work tests theoretical
stabilization mechanisms against experimental discharges with various plasma rotation profiles
created by applying non-resonant n=3 braking, and with various fast particle fractions. Kinetic
modification of ideal stability is calculated with the MISK code, using experimental equilibrium
reconstructions. Analysis of NSTX discharges with unstable RWMs predicts near-marginal mode
growth rates. Trapped ions provide the dominant kinetic resonances, while fast particles
contribute an important stabilizing effect. Increasing or decreasing rotation in the calculation
drives the prediction farther from the marginal point, showing that unlike simpler critical
rotation theories, kinetic theory allows a more complex relationship between plasma rotation
and RWM stability. Results from JT-60U show that energetic particle modes can trigger RWMs?2.
Kinetic theory may explain how fast particle loss can trigger RWMs through the loss of an
important stabilization mechanism. These results are applied to ITER advanced scenario
equilibria to determine the impact on RWM stability.

[1] B. Hu et al., Phys. Plasmas 12 (2005) 057301. [2] G. Matsunaga et al., IAEA FEC 2008 Paper EX/5-2.

NSTX APS DPP 2009 - Kinetic Effects in RWM Stability (Berkery) November 3, 2009



Non-linear inclusion of y and w, in dispersion relation makes
very little difference to M1 SK results

y and w, appear non-linearly on both sides of the
dispersion relation.

, oWoo + dWg (wr + 5"’?’)% + :%%
(ry — Wy )T = — S 3 OWig ~ — — o
p+OWk (wp) + lwy — iveg + wg — w, — iy
Aar— -~ - Y AN . .
/ "’fﬂ‘*’z : — MARS-K is self-consistent,
,ﬂ/ 202 |1 M1SK can use iteration to
> e N N include the non-linear effect.
= =7 i 1e1.2 |, . .
£ b N b4 — Iteration with t,, = 1ms
unstable \ °18 (dashed line) makes very little
: v, =00 02| -04l®20 |- .
L. . . w0, i RIS difference to the result,
0 1 2 3 4 5 Sy wh . I
Re(5W,) especially when vy is small.
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Improvements to the theory and calculation, to use as a
guantitative predictor of instability

1. Examine sensitivity of calc. |2. Include energetic particles

— Non-linear inclusion of w, — Important stabilizing kinetic
and y: Iteration (t, = 1ms) effects in theory
— Sensitivities to inputs: — E.P. modes known to
ex: Aq=0.15-0.25 trlgger RWM in experiment
Tajo .~ 104 {a}n 1
: i e 5 2
:gig § - ”’I}l =l
*i0 | = ”‘ '*"‘“"Mﬂ 2
e 1.2 E _5 o
14 g _ 5
%g [ o
le20 |] 13 — —_— E
' (b) n=1 o
unstable . _ 5F J:_U
I | '| g, [ N
ol . ., y.=0Q) 02| 04 @ Of ]
0 1 2 3 4 5 < ]
Re(5W,) St
A0
121083 @ 0.475 s 0L S
Time[sec]
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DIlI-D experiment motivated by M SK results explored the

effect of energetic particles on RWM stability

M1 SK Analysis

MISK: DIlI-D 135773 t=2.85 (modified)

06+

Resonance with
precassion fraquency

045 of trapped thermal ions
0.2
0.0 unsiable

& Thermal particles only

B Incl. energetic ions

Resonance with
bounce frequency
of trapped thermal ions

: stable

RWM growth rate yt,,

-0.4 -

7

— Predicted instability inconsistent
with experiment

— Adding energetic particles makes

L2t (9=2) (%)

RWM stable - consistent
— Weakened w,, profile remains

DIII-D Experiment (with Reimerdes)

138407 138409

0.4
0.2 M—‘M
0.0 il
60L o, (@2) (kradss)
30 v
ol
4
2 - —
| Plasma response
ol to |-coil fields (n=1,300A,20Hz) (Gauss)
2000 2200 2400 2600 2800 3000
Time (ms)

— Higher n,and | reduced W/W,
by 40% over previous exp.

— RWM remains stable,
but response higher
as w¢—>w¢""eak

Dilli-D
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The RWM is identified in NSTX by a variety of observations
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NSTX 130235 @ 0.746 s

— Change in plasma rotation frequency, w,
— Growing signal on low frequency poloidal magnetic sensors
— Global collapse in USXR signals, with no clear phase inversion
— Causes a collapse in B and disruption of the plasma
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NSTX 121083 @ 0.475 RWM characteristics
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Present isotropic distribution function for energetic particles
overestimates the trapped ion fraction

e First-order check:
— MISK isotropic f overestimates the trapped ion fraction

(compared to TRANSP).
- LOE “wsk _ NSTX 121090 @ 0.59-0.60 s cTTTTLI
& 0.8 TRANSP T LHTE
[ - T .
o 0 - ! :
']-':} : 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 :
100 110 120 130 140 120
K (cm)
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M1 SK sometimes overpredicts stability
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Perturbative vs. Self-consistent Approaches
and
Three Roots of the RWM Dispersion Relation
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y is found with a self-consistent or perturbative approach

The self-consistent (MARS) approach: solve for y and w from:

l:"_r"—l-i(wg',—w]}é = fl—llg-?é

—

ply+i(wg —w))u = jxﬁ—l—j ><B—?-f’—p{u.}a?i‘l—l—ﬁa?ug}

. 1 _
j= —VxB
HO
(y+i(ws —w))B = Vx(uxB)—up-VB
{“.f-l-i{wr;s—w]}f’ = —u-VP

V.P = VitV [p”ffn(ﬁﬁf _ 59)bb| .
The perturbative (MISK) approach: solve for y and w from:

W 4+ oWk
oWy + oWk

(v —iw) Ty =

with 8W_, and 6W, from PEST. There are three main differences between the approaches:

1. The way that rational surfaces are treated.
2. Whether € is changed or unchanged by kinetic effects.
3. Whethery and w are non-linearly included in the calculation.
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Rational surfaces are treated differently

The self-consistent (MARS) approach: solve for y and w from:

(7 +i(wg —w))§ = ﬁ—ug-?é
ply+i(ws —w))it = jxB+jxB-V.I

—p(up-Vua+u-Vuyg)

- 1 N
j= —VxB
HO
(v+i(lwp —w))B = Vx(uxB)—up-VB
(v +i(ws —w))P = —u-VP

V.P — vp*+v-[p”ffl+(ﬁﬁf—p”fjn§.6 |

MARS-K: “continuum damping included through MHD terms”. This term includes parallel
sound wave damping.

In MISK a layer of surfaces at a rational £Aq is removed from the calculation and treated
separately through shear Alfvén damping.
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Unchanging ¢ may be a good assumption

For DIII-D shot 125701, the eignfunction doesn’t change due to kinetic effects.

fluid RWM SC kinetic RWM

m=2 m=2

1

0

radial displacement
— B m
radial displacement

5C.Cy=0.5.{g=2)w,=0.003 5

0 0.5 1 0 0.5
minor radius minor radius

«(Y. Liu, APS DPP 2008)
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Non-linear inclusion of y and w can be achieved in the
perturbative approach through iteration

(H-r: - -E""’!)Tw =

W +0Wg

W, + Wk

Example: NSTX 121083 @ 0.475

-

lteration

0 -2577
-4906
-5619
-5745
-5834
-5855
-5835

o O b W IN -

-1576
431
800
828
835
838
819

-515
-508
-505
-504

-315 -258 -158
-172 -256 -139
-177 -257 -140
-179
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The effect of iteration depends on the magnitudes of y, w
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The dispersion relation has three roots

Ty F. Fa :i Ly Ca s LY sy Ly 3 FoN L Fa. *
. TN+ (E— ST +O+d —iF —Gn—(E—Z)hrt+Os+0—14] .5 _-,.
C=cp — 2 - = - — £Ze~"dé
0 wpet twp +w— 1y —Wpet +wy +w — vy

Liu’s simple example: a=0, ¢, = 0.18, w.«; =0 D=(3+ iﬁb)("j’}l +C)—1+C

Plot contours of 1/|D|

1.0

m—— DertUrbative 0.5

+ SC:rootd
x 3C:root2 -
Tﬁ ' ' o SCoroot3 ' D

[LN]
| EW (Y Liu, APS DPP 2008)
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MISK and MARS-K Benchmarking
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MISK and MARS-K were benchmarked
using a Solov’ev equilibrium

1+ &2

mP(f) == pa v, Fl¥) =1 — Simple, analytical solution to

e [R2ZZ 1. . s ‘ the Grad-Shafranov equation.
b= S | (B R RS B

2Rjao [ w* 4 — Flat density profile means w.

=0.

— Also, w, y, and v are taken to
be zero for this comparison, so
the frequency resonance term
is simply:

A~ 3 _ A
5Wg0€f [(‘? E}M*T“’E] cie—ide

(wp) + lwy + wg

4 4.5 5 55 6

R [m] MARS-K: (Liu, Phys. Plasmas, 2008)

(Liu, ITPA MHD TG Meeting, Feb. 25-29, 2008)
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Drift frequency calculations match for MISK and MARS-K

70

60

501

401

30

201

o) UI/(Ec/e)

10}

r/Ro:0.02

trapped

<wp>/(e/e) [rad/eV]

(Liu, ITPA MHD TG Meeting, Feb. 25-29, 2008)

large aspect ratio approximation (Jucker et al., PPCF, 2008)

0.99

A=B W/E

MARS

1.01 1.02

{wp)

2gA

efe

N Ranﬁr

(25 +

1) =3¢

E (k%)

.E{[kz) +29(

1.03

_1)__

— €, =0.02019 -
_ - — - cylinder . g
— MISK -7
| | | | |
0.97 0.98 0.99 1.00 1.01 1.02 1.03
A =puBye
MISK

L [1-A+ea]
o 2¢,. A

here, €, is the inverse aspect ratio, s is the magnetic shear, K and E are the complete elliptic integrals of the
first and second kind, and A = uB,/g, where p is the magnetic moment and ¢ is the kinetic energy.
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Bounce frequency calculations match for MISK and MARS-K

10 T T T T T 1 -
/R ;=0.02 &
6_
5_
R
. E o
N cylinder t\-%
Hg Q.:. 2
g T
\_Q B
S -1 % 0 1_
/U o] < =002019 -
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(Liu, ITPA MHD TG Meeting, Feb. 25-29, 2008)
large aspect ratio approximation (Bondeson and Chu, PoP, 1996)
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V2 /m;  4qRo K(k) v 2e/m; 2q Ry K(1/k)

L [1=A+eA]?
T 2¢,. A
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MISK and MARS-K match well at reasonable rotation

0.3 03
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DIlI-D Energetic Particle Experiment
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MISK calculations indicate importance of energetic ions

for RWM stability in low rotation DIII-D plasmas

[D30 MP 2009-9%9-07 by Reimerdes, Berkery, et al.]

« Kinetic calculations using thermal MISK: DIll-D 135773 t=2.8s (modified)
parficles only predict RWM to be 06 - ® Thermal perticles only
most unstable at finite rotation . | precession requency B incl. energetic ons

— Resonance with precession 5— "'4%“*’”‘“’“' fons Resonnce v
frequency of frapped particles £ 02 of rapped thermal ions
at lower rotafion % 00 Pt / k

— Resonance with bounce g‘ o \‘/
frequency of frapped particles & O
at higher rotation 04+

- RWM least stable for profile with 00 02 04 06 08 10 12 14 16 18 20
Qt,~1% at g=2 Q1 (9=2) (%)

- Trapped energetic ions (W, /W, ~23%) predicted to stabilize the
equilibrium across the entire (low) rotation range
— Rotatfion dependence smeared out by resonance with precession
frequency with frapped energetic ions
— Low rotation wall stabilized plasmas typically have W,__./W,_,>30%

Din-D

'8 H. Reimerdes, 3rd Meeting ITPA MHD Stability, Oct. 2009



Recent experiment tests kinetic stability models by

reducing the energetic ion content

[D3D MP 2009-99-07 by Reimerdes, Berkery, et al.]
125701 1384007 138405

« An exploratory experiment | ]
succeeded in Iﬂwi""g 2: in ) 2.50i ~ no wall limit N /—
Wi,/ W, from ~35% 10 ~20% 1L '~ -

— Higher density af T T T
- -, (10%m?) S

— Higher plasma current .u?' : = -
N ——— :

- RWM remains stable butan 0.2 #FO%;‘;‘QZ\:&‘;—:&_—_-_—:__ -
increased plasma response to ool Wouloo O
applied n=1 field indicates 1
weaker stabilization at lower  g=—~"=~" A
plasma rotation o mzm ARV ed i

4

- Further experir['nenis f:hnuld EfPlasma response 1o
look for a maximum in the ol 300A lcoil fields (n=1,=20Hz) (Gauss)
amplification at finite rotation 2000 2200 2400 2600 2800 3000

Time (ms)
Din-o

H. Reimerdes, 3rd Meeting ITPA MHD Stability, Oct. 2009



OW, in the limit of high particle energy

Writing 6W without specifying f:

Rewriting with explicit energy dependence:
Wi = V32 Y 3 fdf [dﬂ [dqf %B (wr +01)5 + 5 —— =% [(HT/e)|”
== 0 e{wp) + 1/ETp — ie™ 30 + W — Wy — B
So that, for energetic particles, where € is very large: |
arge

{wp-l-lf‘.f)—i —i 3 :
@—+E@Tb—ﬁ’%ﬁ+ﬂ — 7 — 2R 7

large large

|J|w

W =_JWEZ Z fdrfdﬁfdilﬁ

to l=—oc

Note: this term is
independent of €.
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