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Motivation

• Rotation is generally considered to offer benefits to fusion 
performance through improvements in stability (NTM, RWM, error 
field tolerance) and confinement (turbulence suppression via ExB
shear)

• In present devices, rotation is usually driven by external means
through neutral beam input, as a by-product of heating

• In future burning plasmas including ITER, using beams for 
momentum input becomes increasingly challenging

• Strong need for alternate means of driving rotation in ITER



WM Solomon/APS/Nov2009 NSTXNSTX

Outline:
Recent Techniques for Manipulating Rotation

• Intrinsic Rotation Drive
Generation at the edge 
Inward pinch of momentum
Additional drive in core
Sheared rotation profiles

• Rotation Drive By Non-Resonant Magnetic Fields
Drag to offset rotation
Enhancement of torque at slow rotation
Resistance to rotation slow-down
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Intrinsic Rotation Should Manifest Itself From 
Residual Stress Term In Transport Equation

• Expand transport term in angular momentum balance equation

• Non-diffusive momentum transport recognized both 
experimentally and theoretically 
[Ida et al PRL 1995, Coppi NF 2002, Hahm PoP 2007, Yoshida NF 2007, Solomon PPCF 2007, …]

• Terms independent of Vφ “Residual stress”
– ExB shear [Dominguez and Staebler PoFB 1993; Gurcan et al PoP 2007]
– Up-down asymmetries in geometry [Camenen, PRL 2009
– Fluctuation intensity shear [Diamond PoP 2008]
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• In steady state, NBI torque balanced against momentum flows

• When Vφ is zero, applied NBI torque 
balances “residual stress” drive

A Finite External Torque Is Required To Overcome 
Intrinsic Rotation and Bring The Plasma To Rest
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Good Correlation Found Between Edge Intrinsic Drive  
and Total Edge Pressure Gradient

• Residual stress drives effective intrinsic 
source, worth about one co-neutral beam 
source

• Significant drive of torque at edge
• H-mode pedestal provides universal 

mechanism to drive residual stress
[eg Diamond et al NF 2009]

• GTS simulations show residual stress 
driven from ITG increases with R/LTi
[See W. Wang, Thurs UP8.00083]

• Means of achieving edge rotation 
in future devices
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Momentum Pinch Velocities Are Investigated on Both 
NSTX and DIII-D Using Perturbative Techniques

• On DIII-D, co/counter beams

Co-NBI 12.5 MW
Ctr-NBI 5 MW

• On both NSTX and DIII-D, n=3 
non-resonant magnetic fields

C-coil

I-coil

Vessel

• NSTX has also used unbalanced NBI 
perturbation for core pinch studies

6 External
Control Coils 48 Internal

BP, BR sensors

Copper 
stabilizing 

plates
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Diffusive And Pinch Model Necessary To Describe 
Momentum Flow Evolution

• Flow of momentum through given 
radius is

• Non-linear least squares fitter 
used to solve for time-
independent χφ and Vpinch to best 
reproduce momentum flow
– Fit without pinch poor

• Although residual stress terms 
neglected, fit appears adequate 
in these plasmas
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• Theory predicts drive of momentum pinch through low-k turbulence

– Peeters et al. PRL (2007)

– Hahm et al. PoP (2007)

Good Agreement Found Between Theory And 
Experiment On Both NSTX And DIII-D
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Rotation Peaking From Pinch Only Shows Weak 
Dependence on Collisionality

• Data shows both pinch and 
diffusivity reduced at low 
collisionality 

• Overlap between datasets 
likely fortuitous

– NSTX: H-mode
– DIII-D: L-mode

• What physics responsible 
for enhanced pinch 
“branch”?

• Ratio of Vpinch/χφ
determines peaking

– Slight reduction at very 
low collisionality
[cf Yoshida NF 2009]



WM Solomon/APS/Nov2009 NSTXNSTX

Outline:
Recent Techniques for Manipulating Rotation

• Intrinsic Rotation Drive
Generation at the edge
Inward pinch of momentum
Additional drive in core
Sheared rotation profiles

• Rotation Drive By Non-Resonant Magnetic Fields
Drag to offset rotation
Enhancement of torque at slow rotation
Resistance to rotation slow-down

{

( )
...

drag Viscous

*

TransportueInput torq
momentumangular 

of change of Rate

+
τ

−
−Π⋅∇−∑=

∂
∂ φφ

φ
φ

443442132143421 damp

VVmnR
η

t
V

mnR

φΠ⋅∇

( )
damp

VVmnR
τ

− φφ
*

+
+

+



WM Solomon/APS/Nov2009 NSTXNSTX

ECH Is Found To Modify Intrinsic Rotation In Core;
Evidence of ECH-Induced Drive of Counter Rotation

• GYRO simulations can generate momentum flows of the 
correct magnitude
– But extreme sensitivity to profiles

• Generally core intrinsic torque relatively small compared with 
edge…

DIII-D
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ECH Is Found To Modify Intrinsic Rotation In Core;
Evidence of ECH-Induced Drive of Counter Rotation

• GYRO simulations can generate momentum flows of the 
correct magnitude
– But extreme sensitivity to profiles

• Generally core intrinsic torque relatively small compared with 
edge, but not always 
[central ECH, QH-modes…?]

DIII-D
DIII-D
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Application of High Harmonic Fast Wave Heating on 
NSTX Also Appears To Drive Counter Torque in Core

• RF only rotation profile shows significant rotation at the edge, but 
practically zero rotation in the core
– Edge intrinsic rotation +  diffusion flat rotation profile

+  inward pinch peaked rotation profile

• Hollow rotation profile 
suggests with a counter 
torque in the core

• Other modifications to core 
intrinsic rotation include
– ECH on JT-60U 

(driving opposite rotation) 
[Yoshida PRL 2009]

– LHCD from C-Mod 
[Rice NF 2009]

NSTX

Hosea, RF conference (2009)
Taylor, APS TI3.00002 (Thursday)
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Previous Work Has Shown That Non-Resonant 
Magnetic Fields (NRMFs) Apply a Torque

• Rotation dragged toward finite 
rotation condition
(“offset rotation”)
[Cole PRL 2007, Callen PoP 2009]

• Can be exploited as drive of 
counter rotation

• Basic properties of NRMF torque 
have been characterized
– Validated through full time-

dependent analysis of rotation 
profile

Garofalo et al, PRL (2008) DIII-D

)(~ *2
NRMF φφ −δ− VVBη



WM Solomon/APS/Nov2009 NSTXNSTX

Outline:
Recent Techniques for Manipulating Rotation

• Intrinsic Rotation Drive
Generation at the edge 
Inward pinch of momentum
Additional drive in core
Sheared rotation profiles

• Rotation Drive By Non-Resonant Magnetic Fields
Drag to offset rotation
Enhancement of torque at slow rotation
Resistance to rotation slow-down

{

( )
...

drag Viscous

*

TransportueInput torq
momentumangular 

of change of Rate

+
τ

−
−Π⋅∇−∑=

∂
∂ φφ

φ
φ

443442132143421 damp

VVmnR
η

t
V

mnR

φΠ⋅∇

( )
damp

VVmnR
τ

− φφ
*

+
+

+



WM Solomon/APS/Nov2009 NSTXNSTX

Enhanced Torque Regime Accessed At Low 
Collisionality and Low Rotation

• At moderate rotation, 
transition from 1/ν to ν regime 
by reducing collisionality
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Enhanced Torque Regime Accessed At Low 
Collisionality and Low Rotation

• At moderate rotation, 
transition from 1/ν to ν regime 
by reducing collisionality

• At sufficiently low 
collisionality, transition from ν
to super-banana plateau 
(SBP) regime by reducing 
rotation (ωE)

• Neoclassical transport 
expected to be enhanced in 
SBP regime
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Evidence Found for Increased Torque as Enter 
Regime of Low Rotation / Radial Electric Field

• Rotation feedback control used to measure NRMF torque
– NBI torque compensated to account for NRMF torque
– Has advantage that rotation stays within narrow rotation window

• Strong peaking of NRMF torque found at 
low radial  electric field

NRMF torque

DIII-D

DIII-D
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Evidence Found for Increased Torque as Enter 
Regime of Low Rotation / Radial Electric Field

• Rotation feedback control used to measure NRMF torque
– NBI torque compensated to account for NRMF torque
– Has advantage that rotation stays within narrow rotation window

• Strong peaking of NRMF torque found at 
low radial  electric field
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• Braking increases at low rotation
– No apparent mode activity
– Does not appear to be resonant braking effect

Increased NRMF Torque At Low Rotation Also 
Indicated On NSTX

Transition to FASTER 
braking as nqωE reduced
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Enhanced NRMF Torque at Low Rotation Helps 
Expand Operating Space of QH-Mode Plasmas

• QH-mode plasmas have 
H-mode pedestal without 
ELMs
– Edge harmonic oscillation 

(EHO) replaces role of ELMs
• NBI torque ramps used to 

investigate minimum 
rotation requirements

• Application of NRMF adds 
counter torque to the 
plasma
– Maintains larger plasma 

rotation for the same 
torque

• NRMF torque at low rotation 
acts as barrier to prevent 
further slowing of rotation

DIII-D
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Analysis of Time History of Rotation Indicates NRMF 
Torque  Increases At Low Rotation

• Obtain dependence of 
intrinsic torque and 
viscous transport on 
angular momentum from 
reference shot

• NRMF torque in shot with 
n=3 is remainder after 
including NBI, intrinsic 
and viscous transport

DIII-D

Rotation driven lower by NBI

NRMF torque increases 
to oppose change in rotation
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Analysis of Time History of Rotation Indicates NRMF 
Torque  Increases At Low Rotation

• Obtain dependence of 
intrinsic torque and 
viscous transport on 
angular momentum from 
reference shot

• NRMF torque in shot with 
n=3 is remainder after 
including NBI, intrinsic 
and viscous transport

• NRMF torque density 
increases at low angular 
momentum

– Consistent with SBP 
enhancement 

DIII-D
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Conclusions

• Edge pedestal capable of creating residual stress resulting in a
drive for edge intrinsic rotation

• Coupled with core pinch, can provide rotation shear in core

• Physics of core residual stress is much more complicated

• Non-resonant magnetic fields can drive rotation due to existence 
of offset rotation

• NRMF torque found to be enhanced at low rotation

• All together, may provide many opportunities for rotation control 
and performance optimization for ITER


