NSTX

Supported by

Edge profile and stability analysis as **Edge-Localized Modes (ELMs) disappear** with increasing lithium wall coatings in NSTX

D. P. Boyle,

R. Maingi, J. Manickam, T. H. Osborne, P. B. Snyder and the NSTX Research Team

NERAL ATOMICS

52nd APS DPP meeting Chicago, IL USA 8-12 Nov 2010

Culham Sci Ctr **U St. Andrews** York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP**, Garching ASCR, Czech Rep **U** Quebec

Office of

Lithium wall coatings control recycling and edge density, and lead to ELM-free H-mode

- Analysis of a well-controlled lithium coating sequence in which ELMs gradually disappear
 - Edge density, temperature, and pressure profiles are modified with lithium
- Edge peak pressure gradient moves farther from separatrix, and pedestal gets wider
 - Causes change in calculated bootstrap current
 - Edge stability improved

H-mode leads to instabilities called Edge-Localized Modes (ELMs)

() NSTX

ELMs: The good, the bad, and the ugly

- The good: Eject impurities
- The bad: Erosion, melting, and cracking of plasma facing components (PFCs), reduced confinement
- The ugly: Large ELMs very destructive
 - ITER needs a small or no ELM regime to ensure PFC integrity
 - Requires $\Delta W_{ELM}/W_{TOTAL} \le 0.3\%$ for steady ELMs
 - No Large ELMs allowed!

Zhitlukin, Linke PSI 2006

Different types of ELM cycles can be envisioned

- ELMs triggered by peeling-ballooning modes, ELM size correlates to depth of most unstable mode and to location in parameter space
- Pressure rises up on transport time scale between ELMs, current rises to steady state value more slowly
- Predict changeover in ELM behavior when $J_{ped} < J_{peel} \Rightarrow$ strong density and shape dependence

IIKAEA Fusio

NSTX lithium wall coatings induce ELM-free H-mode

0 NSTX

APS DPP 2010 Poster BP9.00048: ELM/Li Profile Analysis - Boyle

ELM evolution with shot number

(() NSTX

APS DPP 2010 Poster BP9.00048: ELM/Li Profile Analysis - Boyle

Quiescent phases increase with increasing lithium coating

(() NSTX

APS DPP 2010 Poster BP9.00048: ELM/Li Profile Analysis - Boyle

How does lithium make ELMs go away?

- How are n, T, P, J profiles different?
- How is the edge stability different?
- How do stability calculations reflect changes in ELM behavior?

Edge profile & stability analysis procedure

- EFIT equilibrium reconstruction code run at Thomson scattering (TS) profile times for flux (ψ_N) mapping
- Profile fitting with multiple time slices
 - Pre-lithium discharge profiles from last 20-70% of ELM cycle selected
 - Post-lithium discharge profiles used in 100-200 msec windows
- Free boundary kinetic EFITs run to match pressure & current profiles
 - Edge bootstrap current computed from Sauter neoclassical model
 - No direct measurement biggest uncertainty
 - Stability evaluated with PEST code
- Fixed boundary kinetic EFITs run with variations of edge pressure gradient and edge current
 - Stability boundary evaluated with ELITE code

Multiple TS profiles combined for better edge resolution

- ELM free shots combined over ~100 ms window
- ELMy shots combined using ELM syncing
 only use data from end of ELM cycle
- CHERS, magnetics data also combined

ELM-free pedestals wider, higher

Shot 129015 (ELMy) Shot 129030 (Less ELMy) Shot 129038 (ELM-free)

ELMy to ELM-free transition ordered by n_e and P pedestal width

() NSTX

Kinetic EFITs reconstruct equilibria using additional constraints

- Constrained by measured P, J profiles
 - Bootstrap current
 calculated from
 neo-classical model

 $\mathbf{J}_{BS} \propto \nabla n, \nabla T$

- PEST code uses EFITs to calculate growth rates
 - Uses Ideal MHD
 - Not limited to edge instabilities so caution necessary

Fixed boundary-kinetic EFITs + ELITE give stability diagram

- Edge pressure gradient, currents scaled for new kinetic EFITs
 - Uses fixed-boundary from original kinetic EFIT
 - Can also scale *n*, *T*, W, v^* or shift n_e , T_e , P_e pedestal
- ELITE code calculates stability for each combination of P'_{ped} and J_{ped}
 - Only sensitive to edge instabilities
 - Gives stability diagram

Close to instability threshold when plasma is ELMy

Stability boundary shifts after some lithium but ELMs continue

() NSTX

Farther from instability threshold when ELM-free

() NSTX

Conclusions

- Lithium wall coatings in NSTX gradually reduced, then completely eliminated ELMs
 - ELM-free plasmas have wider n_e pedestals
 - Also have wider & higher P_e & P pedestals
 - Peak pressure gradient shifted inward
 - n_e pedestal gradient reduced with increasing lithium
 - Edge T_e, T_i increase and profiles change substantially
- ELM-free plasmas are farther from the edge stability boundary
 - Both boundaries and profiles move as lithium added

Density profile modification due to lithium pumping is the key in changing edge stability

Future Work

- Calculate stability while varying model profiles
- Why are the ELMs not stabilized by diamagnetic drift, as in higher aspect ratio tokamaks?
 - Low growth rates: $\gamma_{lin}/\omega_A \ge 1\%$ unstable experimentally
 - Should be stabilized by diamagnetic drift: $\gamma_{lin}/(\omega^*/2) \le 5-10\%$
- Why do ELMs go away the way they do i.e. with increasing periods of quiescence?
 - Details of density/pressure profile modification may be beyond present ability to measure experimentally
 - Additional Thomson channels being installed for 2011
 - Better edge resolution could make multiple TS times unnecessary
 - How do profiles and stability evolve through ELM cycle?

EFITs require setting outboard T_e at separatrix for flux mapping of Thomson scattering profiles

NSTX

APS DPP 2010 Poster BP9.00048: ELM/Li Profile Analysis - Boyle

APS DPP 2010 Poster BP9.00048: ELIM/LI Profile Analysis - Boyle

8-12 NOV 2010