



# Characterization of the L-H power threshold on NSTX

D.J. Battaglia<sup>1\*</sup>, S.M. Kaye<sup>2</sup>, R. Maingi<sup>1</sup>,

- J.C. Hosea<sup>2</sup>, B.P. LeBlanc<sup>2</sup>, R. Maqueda<sup>2</sup>,
  - S. Sabbagh<sup>3</sup>, G. Taylor<sup>2</sup>, J.R. Wilson<sup>2</sup>,
  - S. Zweben<sup>2</sup>, C.S. Chang<sup>4</sup>, G.-Y. Park<sup>4</sup>
  - <sup>1</sup> Oak Ridge National Laboratory, Oak Ridge, TN
  - <sup>2</sup> Princeton Plasma Physics Laboratory, Princeton, NJ
  - <sup>3</sup> Columbia University, New York, NY
  - <sup>4</sup> New York University, New York, NY
  - \* Participant in the U.S. DOE Fusion Energy Postdoctoral Research Program administered by ORISE & ORAU





### NSTX actively contributes to the international effort to characterize the L-H power threshold (P<sub>LH</sub>)

- ITER modeling need: projection for P<sub>LH</sub>
  - Transition requirements
    - ITPA scaling database
    - First-principles model
  - Species dependence (D, H, He)
  - Effect of 3D fields prior to transitions
- NSTX has a wide range capabilities for L-H studies
  - Li pumping  $\rightarrow$  effect of neutrals and collisionality
  - 3-D fields  $\rightarrow$  rotation and edge magnetic field structure
  - NBI (7 MW) & RF (6 MW) for heating and current drive
  - − Low-A →  $B_{\theta} \sim B_{\phi}$  at outboard, high edge β, low  $B_t$
  - Flexible shaping capability
  - State-of-the-art diagnostics with excellent access

# Recent experiments on NSTX have aimed to characterize $P_{LH}$ in the ST geometry

- P<sub>LH</sub> is reduced with . . .
  - Smaller B<sub>t</sub> at X-point
  - Lower I<sub>p</sub>
  - Balanced double null

All predicted to enhance edge ion loss, thus deeper E<sub>r</sub> well

- P<sub>LH</sub> does not scale with toroidal rotation
- P<sub>LH</sub> is larger with . . .
  - Helium plasmas versus deuterium plasmas
  - Non-axisymmetric magnetic perturbations
- $P_{LH}$  has strong dependence on edge pumping and fueling
  - Well-known "hidden variables" of  $P_{LH}$  scaling



### Dependence of P<sub>LH</sub> with I<sub>p</sub> and B<sub>t</sub> is well documented for toroidal devices

- ITER-like ITPA database scaling
  - Near-linear scaling with B<sub>t</sub>
  - No significant scaling with  $I_p$

 $P_{LH} = 0.0488 n_{e20}^{0.717} B_t^{0.803} S^{0.941}$  [1]

- Low-A devices exhibit I<sub>p</sub> scaling
  - $B_{\theta} \sim B_{t}$  at outboard midplane at low-A
  - May imply P<sub>LH</sub> scales with |B| at outboard midplane

$$P_{LH} = 0.072 n_{e20}^{0.7} B_{out}^{0.7} S^{0.9}$$
 [2]

1 Y.R. Martin et. al., *J. Phys.: Conf. Ser.* **123** (2008) 012033 2 T. Takizuka et. al., *PPCF* **46** (2004) A227  $\begin{aligned} \mathbf{P}_{\mathsf{LH}} &= \mathbf{P}_{\mathsf{OH}} + \mathbf{P}_{\mathsf{abs}} - \mathsf{dW}/\mathsf{dt} - \mathbf{P}_{\mathsf{floss}} \\ \\ \mathbf{P}_{\mathsf{OH}} &: \text{Ohmic heating power} \\ \\ \mathbf{P}_{\mathsf{abs}} &: \text{Absorbed heating power} \\ \\ \mathsf{dW}/\mathsf{dt} &: \text{Change in plasma stored energy} \\ \\ \mathbf{P}_{\mathsf{floss}} &: \text{Power lost by fast ions} \end{aligned}$ 

P<sub>LH</sub>: Minimum loss power needed for LH transition
n<sub>e20</sub>: Line-averaged density (10<sup>20</sup> m<sup>-3</sup>)
B<sub>t</sub>: On-axis toroidal magnetic field (T)
S: Plasma surface area (m<sup>2</sup>)
B<sub>out</sub>: Mag field at outboard midplane



## $I_p$ and $B_t$ scaling of $P_{LH}$ may be described by their relationship to the edge shearing rate and $E_r$

- Hypothesis: LH transition at a critical E<sub>r</sub> x B shearing rate
  - E<sub>r</sub> x B shear rate increases prior to the formation of a pedestal
  - Shearing exceeds a critical value

$$\omega_{ExB} = \frac{\left(RB_{\theta}\right)^{2}}{B} \left(\frac{\partial}{\partial\psi}\right) \frac{E_{r}}{RB_{\theta}}$$

- $\rightarrow$  suppresses turbulence  $\rightarrow$  triggers a positive feedback loop
- From force balance:  $E_r = v_\theta B_\phi + v_\phi B_\theta \nabla (n_i T_i) / Z_i e n_i$ 
  - NSTX measurements: core  $E_r \sim v_{\phi} B_{\theta}$ , edge  $E_r \sim \nabla P_i / Z_i n_i$
  - Edge pressure gradient related to power lost across separatrix
  - XGC-0 calculations: edge  $n_i$  and  $\nabla n_i$  influenced by ion orbit losses
    - Result: magnetic geometries that enhance ion orbit losses require smaller edge pressure gradients to trigger LH transition

Equations from: K.H. Burrell, *Phys. Plasmas*, **4** (1997) 1499



### XGC-0 calculations show the edge E<sub>r</sub> well is larger with smaller B<sub>t</sub> at X-point

- Consider matched discharges with different X-point radii
  - $B_t$  at X-point:  $B_{tX} \sim 1/R_X$
  - Low-A geometry enhances the difference in  ${\sf B}_{t {\sf X}}$
- B<sub>tx</sub> impacts ion loss at X-point
  - XGC-0 calculation for H-mode profiles
  - − Lower  $B_{tX}$  →
    - Larger ion gyroradius  $\rightarrow$ Enhanced ion loss at X-point  $\rightarrow$ Larger E<sub>r</sub> well  $\rightarrow$  Reduced P<sub>LH</sub>
  - Agrees qualitatively with ITPA  $\mathsf{P}_{\mathsf{LH}}$  scaling with  $\mathsf{B}_{\mathsf{t}}$





### Recent experiments on NSTX examine the dependence of P<sub>LH</sub> on B<sub>t</sub> at X-point



- With the same TF coil current ...
  - Match inboard B<sub>t</sub> (i.e., inner gap)
  - Match outboard |B| (i.e., outer gap and  $I_p$ )
  - Match  $B_{t0}$  (same  $R_0$ )
- Try to match other P<sub>LH</sub> variables . . .
  - Line-averaged density
  - X-point height
  - Plasma surface area
  - HFS and LFS neutral fueling

#### Scan $R_x$

- Low triangularity:  $R_x = 0.64$  ( $\delta_L = 0.36$ )
- High triangularity:  $R_x = 0.47$  ( $\delta_L = 0.64$ )
- $B_{tX}$  ratio (low- $\delta_L$  / high- $\delta_L$ ) = 0.73

#### High-δ shape requires more NBI power than low-δ shape to achieve H-mode





### LH transitions occur during periods of steady P<sub>OH</sub> and dW/dt



### $\mathbf{P}_{\text{LH}}$ is similar for both shapes when $\mathbf{B}_{\text{tX}}$ is matched



- TF current reduced for high- $\delta$  shape to match  $B_{tX}$ 
  - P<sub>LH</sub> very similar to low- $\delta$  shape
- Dataset implies  $P_{LH} \sim B_{tX}^{1.0-2.0}$ 
  - 22% 27% reduction in  $B_{tX}$  gives ...
  - 22% 45% reduction in  $P_{LH}$

| B <sub>t0</sub> (T) | R <sub>x</sub> (m) | B <sub>tx</sub> (T) | P <sub>NBI</sub> (MW) | P <sub>LH</sub> (MW) |
|---------------------|--------------------|---------------------|-----------------------|----------------------|
| 0.55                | 0.47               | 0.86                | 1.9                   | 1.1                  |
| 0.55                | 0.64               | 0.63                | 1.0                   | 0.7                  |
| 0.40                | 0.47               | 0.63                | 1.0                   | 0.6                  |



### P<sub>LH</sub> vs B<sub>tx</sub> experiment ran both shapes over a wide range of fueling and pumping conditions



- P<sub>LH</sub> trends higher with line-integrated density
  - Qualitatively agrees with ITPA scaling
  - Yet,  $P_{loss}$  varies over a factor 3 at  $n_{el} \sim 3 \times 10^{15} \text{ m}^{-2}$
- Future analysis: focus on scaling with edge parameters



# Preliminary observation: $P_{LH}$ scales linearly with initial divertor $D_{\alpha}$ intensity



| × LH<br>× L | 300 mg lithium inter-shot<br>(High pumping, high fueling)           |
|-------------|---------------------------------------------------------------------|
| LH          | 50 mg lithium inter-shot<br>(Med. pumping, med. fueling)            |
|             | No lithium inter-shot (Low pumping, low $\rightarrow$ med, fueling) |

- $P_{LH}$  increases with pre-NBI divertor  $D_{\alpha}$  signal
  - May be proportional to initial edge neutral density  $(n_N)$
- Indicates  $n_N$  is important in  $P_{LH}$  calculations
  - NBI heating efficiency depends on  $n_N$
  - Neutrals impact LH trigger (ion neutral collisions)



# Profiles indicate that the scaling with divertor $D_{\alpha}$ is not solely an effect of changes to the NBI efficiency





- L-mode profiles matched before NBI, but not during
  - Expect profiles to be similar if  $P_{abs}$  was the same despite different  $P_{NBI}$



### P<sub>LH</sub> for both shapes strongly influenced by edge fueling and pumping

- Full TRANSP analysis of six discharges
  - Matched  $B_t$ ,  $I_p$ ,  $Z_X$
  - Nearly matched n<sub>el</sub>
    - Required more fueling for high Li shots
    - Divertor  $D_{\alpha}$  larger for low Li case
    - TRANSP accounts for effect of estimated n<sub>N</sub> on P<sub>heat</sub>
- Change in edge fueling has a large effect on P<sub>LH</sub>
  - 20% 40% change with geometry vs
    30% 40% change with edge fueling





### **P**<sub>IH</sub> is a minimum for DN geometry, consistent with prediction that E<sub>r</sub> well is deepest in DN



### XGC-0 calculations predict edge $E_r$ well is deeper at lower $I_p$ in the ST geometry



- Leads to a deeper E<sub>r</sub> well at the plasma edge
- Result is consistent with  $I_p$  dependence of  $P_{LH}$  in low-A geometry





S. Kaye et. al., Nucl. Fusion, to be submitted



### **P**<sub>LH</sub> insensitive to plasma rotation on **NSTX**

#### Radial profiles for NBI and RF heated DN discharges prior to LH transition



Both discharges transition when  $P_{LH}/n_e \sim 0.5$  MW/10<sup>19</sup> m<sup>-3</sup> despite differences in core rotation and  $T_i/T_e$ 

T.M. Biewer, et. al., EPS, Rome June, 2006

### Application of n=3 fields results in larger P<sub>LH</sub>

- Motivated by recent JET and MAST results
- Apply n=3 field in addition to error field correction
  - Applied prior to L-H transition
  - Only small change in toroidal rotation observed
- Found P<sub>LH</sub>/n<sub>e</sub> higher with larger applied n=3 field
  - P<sub>heat</sub>: 1.5 → 2.6 MW
  - $P_{heat}/n_e: 0.6 \rightarrow 1.1 \text{ MW}/(10^{19} \text{ m}^{-3})$



S. Kaye et. al., Nucl. Fusion, to be submitted



### P<sub>LH</sub> and P<sub>HL</sub> are larger for helium plasmas than deuterium plasmas

- HHFW power provides "fine-scale" determination of P<sub>LH</sub> and P<sub>HL</sub>
  - 2009: Current drive phase RF —
  - 2010: Heating phase RF
    - Reduces uncertainty in heating efficiency calculation
    - Analysis is ongoing but experiment was hindered by limited RF power



S. Kaye et. al., Nucl. Fusion, to be submitted

- P<sub>LH</sub> (He) ~ 1.2 to 1.4 P<sub>LH</sub> (D)
  - $P_{HL} \sim P_{LH}$
  - Consistent with ITPA scaling:  $P_{LH} \sim M^{0.5}$

### Summary

- $P_{LH}$  observed to scale with  $B_{tX}$ 
  - Consistent with XGC-0 calculations that link the ion orbit loss at the X-point to the  $E_r$  well depth
  - May contribute to the scaling of  $P_{LH}$  with  $B_t$  seen in all toroidal devices
    - ST geometry can decouple  $B_{tX}$  from  $B_{t0}$  through small changes in  $R_X$
  - Data is 2.5 weeks old  $\rightarrow$  analysis is ongoing
- Recent dataset taken over a range of edge fueling and pumping conditions
  - Initial observation:  $P_{LH}$  scales linearly with the pre-beam divertor  $D_{\alpha}$
  - Lithium coatings are a powerful tool for altering edge fueling &  $P_{LH}$
  - Changes in NBI heating efficiency do not fully describe scaling, implies effect of neutral density on LH dynamics



### Summary

- $P_{LH}$  depends on the magnetic balance of X-points and  $I_p$ 
  - XGC-0: E<sub>r</sub> well is deeper for lower I<sub>p</sub> due to low-energy ion losses
  - MAST results: E<sub>r</sub> well is deeper for balanced double null geometry
  - Both low  $I_p$  and  $|d_{rsep}|$  reduce  $P_{LH}$  on NSTX
- P<sub>LH</sub> appears to be insensitive to toroidal rotation on NSTX
  - Suggests the ion pressure gradient is the dominant term in  ${\rm E}_{\rm r}$  at the plasma edge
  - P<sub>LH</sub> is larger with n=3 fields applied, but the effect does not seem to be attributed to a change in the plasma rotation
- P<sub>LH</sub> is 1.2 1.4 times larger in He plasmas than D plasmas



#### Acknowledgement

This research was funded by the U.S. Department of Energy, contract numbers DE-AC05-00OR22725 (ORNL) and DE-AC02-09CH11466 (PPPL). D.J. Battaglia is supported under an appointment to the U.S. Department of Energy (DOE) Fusion Energy Postdoctoral Research Program administered by the Oak Ridge Institute for Science and Education under contract number DE-AC05-06OR23100 between the U.S. Department of Energy and Oak Ridge Associated Universities.

#### **Reprints**

