

Supported by

Development of Advanced Spherical Torus Operating Scenarios in NSTX

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI Princeton U Purdue U SNL Think Tank. Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Stefan Gerhardt

D. A. Gates, J. E. Menard, M. G. Bell, R. E. Bell, E. Fredrickson, S. Kaye, E. Kolemen, H. Kugel, B. LeBlanc, D. Mueller, *PPPL* R. Maingi, J. M. Canik, *ORNL* S. A. Sabbagh, *Columbia University* V. A. Soukhanovskii, LLNL H. Yuh, *Nova Photonics* and the NSTX Research Team

2010 APS DPP

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Office of

Science

Overview

NSTX is a Medium Sized Spherical Torus With Significant Capabilities for High-β Scenario Research

High-Elongation Configurations Developed to Challenge Limits in β_T , Non-inductive Current Fraction and Sustainment

Global Performance and Confinement

Strong Shaping has Helped NSTX Make Continued Progress on a Range of Optimization Targets

Lithiumized Discharges Shows Confinement Scaling Similar to Higher Aspect Ratio

Consider > 75 msec averaging windows, at least one current diffusion time into the I_P flat-top, at high- κ and δ , in lithium conditioned discharges Criterion excludes many high-confinement discharges

- Confinement exceeds previous low-A scaling by ~30%.
 - Lithium conditioning, strong shaping, higher β_N and longer-pulse duration.
- Working to revise ST-scalings for τ_E in this class of discharge.

Dedicated Scans Show Confinement Trends in Lithiumized High-Performance Plasmas

- Dedicated scans as part of the 2010 JRT on SOL physics.
 - Red below, black is full database.
- I_P scaling intermediate between ITER-98 and previous NSTX.
- B_T scaling is very weak.
- Difference due to Lithium, collisionality?

Larger Aspect-Ratios For NSTX-Upgrade

Higher-Aspect Ratio Plasmas are a Significant Extension of the NSTX Operating Space

- Recent ST studies looking at higher aspect ratio.
 - <u>NSTX-Upgrade</u>, NHTX
 - GA versions of ST-FNSF
 - PPPL ST Pilot Plant
- Likely deleterious to both n=0 and n=1 stability
- Beginning to assess these scenarios in NSTX

Recent Experiments Are a Significant Extension in the κ vs A (=R₀/a) operating space.

2005

2007

2009

2010

2004

2006

2008

High-A Shape Compatible with NSTX-Upgrade Center Column, with No Control Problems

High-Performance Sustained For All Aspect Ratios

- β_N is somewhat reduced at fixed power with larger aspect ratio:
 - Confinement is a bit worse at higher A... not expected from standard ITER scaling.

$$\tau_{ITER-98(y,2)} \sim \frac{R_0^2 \kappa}{\sqrt{A}}$$
$$\frac{\tau_{HAR}}{\tau_{LAR}} \sim \left(\frac{88}{85}\right)^2 \frac{2.85}{2.5} \sqrt{\frac{1.45}{1.68}} \approx 1.1$$

- Plasma are a bit taller.

$$\beta_{N} = \frac{aB_{T}\beta_{T}}{I_{P}} = \frac{2\mu_{0}Wa}{VB_{T}I_{P}}$$

$$V \propto R_{0}a^{2}\kappa$$

$$\beta_{N} = \frac{2\mu_{0}Wa}{R_{0}a^{2}\kappa B_{T}I_{P}} \propto \frac{W}{a\kappa I_{P}} \propto \frac{\tau_{E}}{(height)}$$

- Bootstrap current drops as $q\beta_N$.
 - Both q and β_N are lower.
 - Core n=1 modes and RWMs were the common performance limiting instabilities.

Global Stability

β_N Controller Implemented Using NB Modulations and rtEFIT β_N

- Controller implemented in the General Atomics plasma control system (PCS), implemented at NSTX.
- Measure β_N in realtime with rtEFIT.
- Use PID scheme to determine requested power:

$$e = \beta_{N,reqeust} - LPF(\beta_{N,RTEFIT};\tau_{LPF})$$

$$P_{inj} = P_{\beta_N}\overline{C}_{\beta_N}e + I_{\beta_N}\overline{C}_{\beta_N}\int edt + D_{\beta_N}\overline{C}_{\beta_N}\frac{de}{dt}$$

$$\overline{C}_{\beta_N} = \frac{I_P V B_T}{200\mu_0 a\tau}$$

- Use Ziegler-Nichols method to determine P & I.
 - Based on magnitude, delay, and time-scale of the β_N response to beam steps.
- Convert "analog" requested power to NB modulations.
 - Minimum modulation time of 15 msec.

Controller Can be Used to Maintain β_N Near Stability Limits

- Black discharges have full 6 MW injected power.
 - Disrupt at ~0.85 sec.
- Green and red discharges have β_N control.
 - Shots run through.
- Blue case has slightly higher β_N request.
 - Disrupts at similar time.
- Necessary to program proper timedependent β_N request.
 - Must not request β_N values that exceed the instantaneous limit in a time evolving plasma.
 - Feedback on a variable like RFA might eliminate this issue?

No-Wall β_N Limit Can Vary Widely Depending on Profiles; **Best Shots Near With-Wall Limit**

1.4

1.4

Core n=1 Modes Limit Performance Over a Range of q₉₅

Use a Coupled 2/1 Island + 1/1 Kink Eigenfunction to Understand Mode Structure

Optimized for high β_T (κ =2.6, I_P =1.0 MA, q_{95} =7)

Method: •Compute an MSE constrained equilibrium reconstruction.

•Invert the USXR emission as a function of helical flux using a regularized inversion method.

•Apply resonant helical flux perturbation to open an island on the q=m/n surface.

$$\delta \psi_h = A(\psi) \cos(n\phi - m\theta)$$

•Apply a simple shift to the core surfaces.

$$\xi_{1,1} = \begin{cases} \xi_0 & r < r_c \\ \xi_0 e^{-[(r-r_c)/r_f]^2} & r > r_c \end{cases}$$

•Compute the expected chordal emission through the USXR chords.

•Compare to measured emission contours.

•Adjust the island and shift parameters, and repeat integration and comparison.

Optimized for high β_P (κ =2.6, I_P =0.7 MA, q_{95} =13)

Model Eigenfunctions Can Match USXR Emission For Both Cases

How to Eliminate Core n=1 Modes?

- Modes can often be triggered by ELMs or EPMs.
 - Direct triggering or profile modifications?
 - Lithium helps to avoid ELMs.
- Triggering modes is easier when the flow shear at q=2 is reduced.
- "Triggerless" modes are also often observed.
 - These are non-resonant 1/1 modes.
 - Strong sensitivity to details of q-profiles.
 - Modes can by eliminated by increasing the injected power, slowing the q-profile evolution.
- Maintaining elevated q_{min} would help eliminate these instabilities.
 - Would 3/1 modes limit performance...how high does q_{min} need to be?
- Open question:
 - Why do some discharges maintain q₀ near 1 without core MHD, while other discharges develop these modes?

Current Profiles and the Non-Inductive Fraction

Successful Bench-Mark of TRANSP Neutron Dynamics Against Measurements

TAE Avalanches Simulated in TRANSP Using Impulsive Anomalous Fast Ion Diffusion

"Optimized" Fast Ion Diffusion Profile Leads to Agreement on the Current Profile

() NSTX

Current Profile Reconstructions Have Been Done For a Wide Range of *MHD-Free* Plasmas

Non-Inductive Fractions are Maximized at Low Plasma Current

NSTX