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Overview

• Lithium operations in NSTX and boundary issues
• Diagnosis of SOL with Langmuir probe array

– Hardware
– Some initial results
– Initial 2-point modeling of the SOL

• Dynamic plasma facing components (PFCs) in NSTX
• OEDGE interpretive modeling of NSTX

• Building a material model to inform NSTX-U decisions
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NSTX Overview of Plasma Parameters
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Lithium Deposition via Evaporation

LITER 
Canisters

• Electrically-heated stainless-steel canisters with re-entrant exit ducts 

• Mounted 150° apart on probes behind gaps between upper divertor plates

• Each evaporates 1 – 40 mg/min with lithium reservoir at 520 – 630°C

• Deposits lithium on lower plasma facing surfaces 

• In regular use since 2006

H. Kugel
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Lithiated Graphite Wall Conditions Transient

• Control room experience indicates that after 2-3 discharges, 
benefits of lithium-coated PFCs wanes
– LITER evaporation rate limited

– Shot cycle time finite

– Limited coatings possible during regular operations

• Clean, macroscopic liquid lithium predicted to have very low 
recycling coefficient 
– CDX-U demonstrated improved energy confinement with large-area 

liquid lithium limiter (Majeski, PRL, 2006)
– See also LTX posters in session CP9 (this afternoon).

• Motivates the installation of the liquid lithium divertor in 
NSTX
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Liquid Lithium Divertor

• Result of collaboration with Sandia National Laboratories
• Consists of flame-sprayed Mo surface on a thin stainless 

steel barrier covering a thick copper substrate
• Loaded via LITER evaporation from above

• Temperature controlled

• See H. Kugel - BP9.00041

0.15 mm
Porous Mo

0.25 mm SS Li Barrier Bonded

to 22 mm Thick Cu Backing Plate

Micrograph of porous Mo layer

Diagnostic tile
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New Langmuir Probe Array

J. Kallman, RSI, 2010
M.A. Jaworski, RSI, 2010

• Dense array of electrodes 
provides high spatial 
resolution

• Radially covers the LLD 
inboard leading edge

• Collaborative effort with U-
Illinois

• Partially filled with standard 
swept probes, triple Langmuir 
probes and scrape-off-layer 
current monitors

• See also: J. Kallman 
BP9.00042 and V. Surla 
BP9.00046
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Triple Probes Complement Existing Turbulence Diagnostics

• Data example before and during application of 3D fields
• Probability density functions altered, as well as frequency
• Electron temperature becomes bi-modal
• Impact on single-probe interpretation being assessed
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SOL Structure Obtained During Strike Point Sweeps

• Probe positions referenced to 
magnetic reconstruction
– Blue points = single probe
– Black points = triple probe or 

SOLC probe
– Red line = Binned average

• Allows SOL structure to be obtained 
during a strike-point sweep over the 
array

• Provides additional means of 
locating the separatrix

– V
F
 zero-crossing coincides with 

SOLC zero-crossing and
– Peak pressure corresponds to 

this location
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Importance of SOLC in PMI processes

• Local floating potential and SOLC intimately tied
– Floating potential must adjust to be consistent with currents flowing 

through plasma

– Equivalent to biasing the PFC to drive a current

• Enhanced sputtering in regions of positive current
– Sheath potential energy enhanced by additional voltage between PFC and 

floating

– Depending on Z of ion, impact energy can be greatly enhanced

• Enhanced heat flux in regions of negative current
– Electrons carry bulk of plasma energy

– Alters sheath heat transmission coefficient in the positive direction

– Exponentially grows as surface voltage approaches plasma potential

– Modest increase in sheath heat transmission occurs for positive current 
regions as well through enhanced ion energy
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Upstream Separatrix Location Determined by Two-Point 
Model

• Simple 2-point model applied to 
SOL
– Balances particle, momentum and 

energy in a flux tube

– Define peak pressure along the target 
as the “real” separatrix location

– Heat flux calculated with probe data 
(including floating potential effects)

– Connection length obtained from 
TRACER code and magnetic soln.

– Thomson scattering at midplane 
provides profile data

• Consistent location found with 
pressure and temperature
– Density via 2-PM is low

– Location improved with OSM integration 
(below) – discrepancy most likely due to 
magnetic variation in flux tube
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What is the 2-Point Model?

• Models SOL flux tube
– Straightened out plasma
– No B variation
– No radiative losses (in simple 2-

PM)
– Power enters at one end

• Balance pressure and power 
through flux tube
– Assumes classical parallel-

conductivity
– Assume perfect recycling at the 

wall and particle balance on the 
flux tube

• Target power deposition modified 
with biased target sheath heat 
transmission
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Two-Point Model Comparison of two LLD discharges

• Divertor profile exhibits higher pressure

– P
t,peak

 = 170 Pa in 139396

– P
t,peak

 = 740 Pa in 139410

– Temperatures are comparable, but 
density is much larger in 139410

– Mixture of effects – increased gas 
fueling, reappearance of type V ELMs

• Resulting upstream temperature is 
higher

– T
u
 = 54 eV in 139396

– T
u
 = 80 eV in 139410

• However, 2-PM is too simple

– T
u
 is robust over a large set of 

parameters, but pressure and density 
affected by radiation and neutral 
momentum loss

– Full strike-point profile not obtained in 
this discharge
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Local Recycling Measurement

• Utilizes Langmuir probes and 1D-CCD 
camera D-alpha emission
– D-alpha emission at PFC due to 

recycling neutrals

– I
sat

 directly measures ion flux to probes

• Ratio provides recycling coefficient, 
however...

• Plasma geometry, radiation profile and 
reflections create significant uncertainty
– Therefore, use the ratio in D-alpha 

intensity to I
sat

 as a relative recycling 

coefficient

• Relative recycling coeff. (RRC) allows 
trend analysis, but not absolute recycling 
coeff. determination

Plasma

Ions
out Neutrals 

in

PFC
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Example Relative Recycling Coefficient Calculation

• Plasma diverts after 200ms

• Achieves stable shape by 400ms

• Measurement made during 
stationary discharge period from 
400-600ms (mean of signal)

• Same discharge shape in both shots 
provides control on geometric factors
– During first experiment, fueling rate 

increased (would tend to increase 
RRC)

– In PFZ, dependent on PFCs on both 
sides of the flux tube (i.e. inboard and 
outboard – but both still Li-ATJ)

– Motivates more rigorous work with 
OEDGE to take into account X-point 
and divertor leg radiation
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Recycling Evolution During LLD Heating by Plasma

• During shot sequence, plasma heated 
the LLD 

– Melting point of Li = 180C

– Gas puff rate increased during scan

– Z
eff

 of carbon decreased

• Spatial variation of probes provides 
measurement at different PFCs

– Probe 1 over Li-ATJ

– Probe 2 at transition

– Probes 3 and 4 over LLD

• Downward trend as run progressed 
visible in LLD probes, 

– Less apparent on Li-ATJ

– Correlated with fueling efficiency 
decrease, and

– Trends downward with temperature

– But fueling was increased in sequence

– Changes in both I
sat

 and D
α

A. McLean – DB-IR
M. Bell – Fueling Eff.
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Lithiated Graphite Exhibited Increase in Recycling

 Single LITER evaporation of 
7.5gm

 Plasma shape and fueling 
comparable

 Discharges repeated 
through entire day

 Systematic rise in relative 
recycling coefficient on 
lithiated graphite, but not on 
the LLD

 Multi-shot ion fluence 
indicates LLD has “reservoir” 
effect compared to Li-graphite
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Simplified Model for Recycling and Material Saturation

• PISCES-B data showed 
that Li absorbs D until 
converted to LiD (M. 
Baldwin, NF, 2002)

• LITER evaporation 
deposited 7.5gm, but 
amounts to 3.5x1022 #/m2 in 
vicinity of LLD

• Simple fluence comparison 
would suggest the PFC 
should be saturated within 
the first discharge...

• Yet recycling continues to 
trend upward

Equivalent number density
of deposited Li
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Simple Model of Recycling as Function of Saturation

• Define saturation 
level, θ

• Assume recycling 
proportional to 
saturation level

• Only 1-R particles are 
absorbed

• Solve ODE for 
saturation as a 
function of incident 
fluence
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Can Predict 99% Recycling Fluence

• Change in saturation slows 
exponentially as material fills 
up

• Fluence to reach 99% 
recycling surface calculated 
as about 26 times the 
available lithium deposited
– Assumes Rmin = 0.90 

from J. Canik SOLPS 
modeling 

– Rmax = 1.0
– Predicts the Li-ATJ may 

have more pumping ability 
beyond what was tested
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More Rigorous Analysis Available with OEDGE code suite

• Confront your model with all available data simultaneously

• Onion-skin method (OSM)
– Generalization of the 2-point model – integrates fluid equation along 

a flux-tube
– Assumes parallel transport >> perpendicular 
– Allows individual flux-tube solution

• Eirene
– Neutral transport code
– Determines background neutral pressure in machine and interaction 

with plasma solution
– Takes a wall model as input for calculating the recycling from the 

surface

• DIVIMP
– Monte Carlo impurity model – utilizes sputtering tables to determine 

launch probabilities – tracks impurities and radiation cause by them
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OSM Temperature Integration Improves Upstream Separatrix 
Location

T
e
 solution

• Separatrix location 
consistent in all three 
quantities

– Mid-plane density finds 
consistent separatrix 
location with T

e
 and P

e

• Testcase run to develop 
work flow (proof-of-principle 
test)

– Outboard Ne and Te 
obtained by probes

– Core profile determined by 
MPTS

– Inboard profile mimicked 
for this test case

– Plasma solution found via 
pseudo-self consistent fluid 
model along flux-tubes

– No neutral solution yet, 
simple ionization model
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Option SOL-13 – Pseudo Self-Consistent Integration

• Integrates only some of the conservation equations along 
the flux tube
– Integrates T(s) along flux tube with a prescribed radiative power 

loss along flux tube

– Utilizes ionization model to integrate Γ(s) (particle flux) in similar 
fashion

– Solves for density and velocity based on pressure balance and flux

• Primary difference with SOL-22 option is that SOL-22 
integrates all three conservation equations simultaneously

• For the case run shown, no radiation is prescribed and only 
the ionization is set as a decaying exponential with decay 
length of 8cm (compared to 14m distance to mid-plane 
very close to separatrix)
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Wide Range of Diagnostics Available for Constraints

• Each new diagnostic provides 
means for constraining the 
model

– e.g. divertor spectroscopy 
provides impurity 
information

– e.g. QDMs provide impurity 
redeposition/transport

– e.g. Pressure gauges 
provides information on 
neutrals

• HDLP not shown in figure

– Inboard coverage by 
Langmuir probes could still 
be improved

– Mid-plane reciprocating 
probe also not shown
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First Sanity Check: LLD Plate Heating

• Thermocouples measure LLD 
plate temperatures in bulk 
copper
– Treat each LLD plate as a 

90lb. Calorimeter
– Rise in mean temperature 

yields energy deposited over 
entire discharge

• Estimate plasma heating time 
by the time spent diverted

• Plate heating and Langmuir 
probe-based heat flux 
calculations show particle 
heating accounts for ~90% of 
total heat input
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Study Methodology

• Take all available data to constrain the plasma and impurity 
levels

• Determine best material model (e.g. recycling coeff.) to best 
match available data

• Construct recycling coefficient database for lithiated graphite 
as well as lithium-coated moly/LLD for range of operating 
scenarios
– Local plasma temperature, density
– PFC bulk and front-face temperature

• Create model to describe the resulting behavior based on 
the plasma response to the PFCs
– Supplement with sample diagnosis as it becomes available (see 

MAPP probe poster BP9.00088)
– Other offline experiments and modeling as appropriate
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Determining LLD Plate Front-Face Temperature Response 
with Offline Experiments

• Diagnostic neutral beam 
exposures of LLD sample piece
– Obtained front-face temperature 

response to ~1.5MW/m2 heat flux

– See T. Abrams BP9.00045 for 
experiment details

• Perfect material bonds not 
present in sample
– Tests show much larger 

temperatures than expected

– Preliminary estimates indicate 
resistive layer exists between 
LLD layers (equivalent to x20 
reduction in porous moly 
conductivity)

• Bench-marked model in the 
works for future predictive 
capability

OpenFOAM LLD Sample Model
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Extending the Recycling Model

• Simple model may explain steady trend in Li-ATJ data

• Better modeling of the PFCs will depend on extracting actual 
values of recycling coefficient, not relative recycling

• Some temperature scans already performed
– Include surface evaporation and recombination
– Sputtering of lithium and deuterium
– Sputtering of other impurities

• Informs on PFC choice and conditioning method for NSTX-U 
and other machines
– Does liquid lithium saturate in a similar fashion?
– What are the limits in temperature for “low” recycling to persist?
– Is there a feasible liquid lithium PFC in a high-performance machine 

or pilot plant?
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Summary

• NSTX divertor is rich in physics topics and phenomena

• Measurements to date indicate LLD interaction with the bulk 
plasma is subtle and requires careful analysis
– Some indications of SOL changes via Langmuir probe measurements, 

however...

– Complicated by multiple variable changes (e.g. fueling rate)

– Latest set of data under analysis

• Relative recycling measurement indicates LLD and Li-ATJ PFCs 
evolve in time over the period of several discharges
– Corroborates “control room” wisdom that Li wall effects are short lived

– Analysis of cumulative fluence to PFCs motivates a simple recycling model 
based on material saturation

– While encouraging, should be improved with “real” recycling analysis

• OEDGE analysis of NSTX plasmas ramping up after initial test 
runs – major goal is to develop detailed understanding of lithiated 
PFCs and the impact on the global plasma
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Reprints
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