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Motivation

� Strong interest on fast ion transport: responsible for 
fusion yield,  drive for several type of instabilities 

� In NSTX Fast Ion density profile is routinely 
measured by FIDA diagnostic

� FIDA density profiles are observed with different 
degrees of peaking  in different plasma conditions

� The objective of the work is to assess the fast ion 
density profile on an extended set of NSTX 
discharges

� Identify dependences on main plasma parameters, 
regimes with specific features in the fast ion profile
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FIDA measurement concept

� Active Charge eXchange
– Measures hot tails of Balmer alpha line
– Large Doppler shift of recombining fast ions
– Background subtraction is crucial

� Effective average over velocity space
– Viewing angle
– NBI geometry
– Effective CX cross section

� Weighting Wλ(E,p) function gives the 
sensitivity to different velocity space 
regions (pitch parameter p=v||/v)

•+

Fast Ion

CX Rec.

Balmer αααα
Emission

FIDA
spectrum

Weight
function

FI distribution 
function

W(E,p) accounts for:

1. Viewing geometry (Minimal Energy)

2. Gyro angle average

3. CX cross sections and radiative
rates

[W. W. Heidbrink RSI 81  (2010)]
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NSTX Vertical FIDA diagnostic

� Two systems
– Spectroscopic (s-FIDA ) top view

– Filter (f-FIDA) bottom view

� Duplicate view to evaluate 
background emission
– Faster than beam modulation

– Toroidal symmetry hypothesis

� Vertical view
– signal from fast ions with large 

perpendicular velocity
– sensitive to high pitch angle 

region of velocity space

– Important contribution from 
trapped fast ions

[M. Podestà RSI 79 (2008)]
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FIDA density definition

� An approximate Fast Ions density may be calculated from the 
experimental radiance over a wavelength interval

� The average is taken over the fast ion distribution function. 
To obtain nf one should already know F(E,p)

� Full treatment requires accounting for W(E,p) (FIDASIM code [Ref.6])

� In this work we calculate nFIDA as:

� Neutral density calculated using a pencil beam attenuation code [Ref. 7]
� Halo neutrals are not taken into account!
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Example of s-FIDA spectrum

� Dα cold peak recovered from neutral filter transmission function
� Impurity lines from Oxygen and Carbon (some are CX)
� Beam emission on mostly on red side 
� Exploitable range on blue side 651-654 nm (Eλ~10-60 keV)

CII

Beam Emission

Cold
Dαααα

OV

CVI
OV+CII BV
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NSTX parameters

Major radius 0.85 m

Aspect ratio 1.3

Elongation 2.7

Triangularity 0.8

Plasma current ~ 1 MA

Toroidal field <0.6 T

Pulse length <2 s

3 Neutral Beam sources
PNBI≤ 6 MW
Einjection ≤ 95 keV
1 <v fast /vAlfven < 5
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Typical evolution of FIDA profiles on NSTX

� NSTX FIDA signal typically is large at the early 
phase of the discharge (low ne / high NB 
penetration)

� Diminishes with the natural density ramp due to 
wall recycling

� Challenging measurement for ne>6x1019 m-3.

� The nFIDA does not respond promptly to NB 
steps, follows neutrons

� Different type of instabilities affect dramatically 
the nFIDA profile (MHD, ELM, EPM, etc.)
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Effect of Low Frequency MHD

� Low Freq. MHD 
activity strongly 
affects nFIDA

� Often accompanied 
by high freq. modes

� Drop in neutron rate 
observed at mode 
onset

� nFIDA profile collapse 
in ~10 ms timescale
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Examples of n FIDA profiles

H-mode
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ne=4x1019 m-3
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Example of scaling with plasma parameters

Controlled parameters study

� Series of discharges at 
various couple of Btor, Ip

� q95=10
ne,lin=5x1019 m-2

Te=700 eV
� t=200 ms (beginning of 

current flat top)

� nFIDA,max, dnFIDA/dR increase with Bt and/or Ip
� The onset of MHD modes and AE activity limits the comparison to 

specific time windows
� Difficult to control discharge parameters, in particular ne
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Statistical approach: a database of n FIDA profiles

� Database of 200 nFIDA profiles from 2010 experimental run

� H-mode, P=3-6 MW, Btor=0.3-0.5 T, Ip=700-1300 kA

� Data are averaged in time windows of 10-100 ms, with stable or slowly 
evolving plasma parameters (nFIDA, neutron rate, mode activity,…)

� Radial profiles of nFIDA, ne, Te , Ti … fitted with cubic spline interpolation 
on major radius R=0.95-1.5 m

� Mode Activity described by 3 integer value flags, for low (2-20 kHz), 
intermediate (20-150 kHz) and high (150-2000 kHz) frequency range: 
values assigned manually from 0 to 3, <0 if chirping or broadband

� Investigate trends of nFIDA maximum, peaking and peak location
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Parameter space coverage

� Magnetic configuration (from EFIT)
� Te, ne (from Thomson scattering)
� Ti, vtor (from Charge Exchange)
� Neutron Rate
� …
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Maximal value of n FIDA

� The dependency of the peak value of nFIDA on Btor, ne, q95, 
PNBI has been considered for the entire set of samples

� No clear trend is apparent
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FIDA density peaking: B tor dependence

� Peaking parameter defined as P(x)=xmax/<x>, (maximum value, 
normalized by the linear average in the region R=1.05-1.40 m)

� P(nFIDA) spans values from 1.5-3.5

nFIDA peaking 
decreases with B tor

No clear correlation 
with I p or  q 95
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FIDA density peaking: n e dependence

� Correlation suggested with 
electron density ne

� No apparent correlation 
with Ip or q95

� May be related to incorrect 
estimate of neutral density 
(e.g. halo neutrals are not 
included)
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Effect of strong Low Frequency Mode Activity

� Select two classes of profiles 
characterized by different degrees 
of mode activity (freq. < 20 kHz)

� Restricting to high FIDA signal 
profiles to improve quality (30% of 
total samples)
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Radial location of FIDA density peak

� The peak displacement is 
defined as:
∆Rmax=R(nFIDA,max)-Raxis

� Selection of Low Mode Activity 
samples

� Correlation emerges with βp

� ∆Rmax decreases with βp

� The displacement (with large 
scatter) also correlates with Raxis

� ∆R ~ -1.0 Raxis

� nFIDA peak close to R=1.05m
� Related to the Fast Ion source 

location

 

 
P

N
B

I [M
W

]

2.59

3.28
3.96
4.65
5.34
6.03

0.97 0.98 0.99 1 1.01 1.02 1.03 1.04 1.05

0

0.02

0.04

0.06

0.08

0.1

0.12

R
axis

 [m]

∆ 
R

F
ID

A
 [m

]

0.2 0.4 0.6 0.8 1 1.2
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

β
pol

∆ 
R

F
ID

A
 [m

]

 

 

P
N

B
I [M

W
]

2.59

3.28
3.96
4.65
5.34
6.03



19

Conclusions

� A database of FIDA density profiles has been built to study the 
dependences on plasma parameters

� Peaked nFIDA is generally observed, with peaking factor of 2-3
� Peaking nFIDA scales with ne and Btor

� Different degrees of peaking are observed in combination with low 
frequency MHD of Alfvènic modes

� Off axis nFIDA peak tends to sit close to R=1.05 m

� The nFIDA density definition depends on FI distribution function: 
variation in velocity space can affect nFIDA

� Halo neutrals are not accounted by the beam deposition code used
� The FI population depends strongly on Mode Activity and its history: 

difficult to obtain a coherent set of profiles

� Need to increase the number of data samples to allow for reliable 
analysis on restricted sets
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Outlook

� Use of FIDASIM synthetic diagnostic to compare the experimental profiles 
and spectra with theoretical models of the distribution function (specific cases)
[Y.Luo, Improvements to the Fast-ion D αααα (FIDA) Simulation Code  (BP9-PS1)]

� FIDASIM may be used to predict the dependency on Btor and ne on the 
assumption of a given FI distribution function

� Improve the neutral density calculation including halo neutrals (FIDASIM)

� Use of the data from the new tangential FIDA to identify velocity space 
variation of the FI distribution function
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Coming soon: A Tangential FIDA diagnostic for NSTX

� In NSTX, Fast-Ions are generated by the heating Neutral Beams (co 
current tangential injection)

� The distribution function is populated in the region of high parallel 
velocity ⇒ p > +0.5

� Installation of a tangential FIDA diagnostic is about to begin to study 
the high parallel velocity region of the phase space

� Key points:
– Maximize view alignment with local magnetic field B
– Spectroscopic and Filter instruments scheme

– Paired active and background views scheme

� Sampling the (p,E) space where the distribution function is more 
populated ⇒ enhanced FIDA spectrum source

� Contribution from Fast Ions with large parallel velocity ⇒ spectrum 
extends to higher energies
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Tangential FIDA diagnostic views

Active view 
LOS

Background
view LOS

Passive plates

RF Antenna

NBI

NBI upgrade
(2012)

Diagnostic NBI
(2011)
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Response function of t-FIDA

� Wλ (E,p) evaluated at 
– R=1.2 m,

– Eλ=35 keV (652.1 nm)

� Tangential view is 
sensitive to p>0.8

� Contribution from small 
region of phase space

� Enhanced energy 
resolution

� Enhanced source of 
FIDA signal

Complementary sampling
of velocity space


