

Supported by

Gyrokinetic analysis of thermal transport scaling in NSTX and MAST

College W&M Colorado Sch Mines Columbia U CompX **General Atomics** INFI Johns Hopkins U LANL LLNL I odestar MIT Nova Photonics New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U** Purdue U SNL Think Tank, Inc. UC Davis UC Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U** Wisconsin

Walter Guttenfelder¹, S.M. Kaye¹, J. Candy², R.E. Bell¹, B.P. LeBlanc¹, G.W. Hammett¹, D.R. Mikkelsen¹, H. Yuh³, A.R. Field⁴, M. Valovič⁴, W.M. Nevins⁵, E. Wang⁵

> ¹PPPL, USA ²General Atomics. USA ³Nova Photonics Inc., USA ⁴Culham Centre for Fusion Energy, UK ⁵LLNL, USA

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP.** Garching ASCR, Czech Rep **U** Quebec

Office of

Overview

- Favourable $\tau_{E,th} \sim v_*^{-(0.7-0.9)}$ dependence in STs
 - Physical origin unclear, could influence design of next-generation device at low v_*
- Microtearing modes found to be unstable in experimental v_* scans
 - Scaling of linear growth rates $\gamma_{\text{lin}} \sim \nu_e$ potential candidate to explain experimental confinement trend
 - Linear thresholds exist in v_e , β_e , a/L_{Te}

\Rightarrow First <u>non-linear</u> microtearing simulations in NSTX

- Require relatively fine radial resolution ($\Delta x \approx 0.2 \rho_s$, nx=400) to capture physics
- Significant transport predicted without E×B shear
- Dominated by electromagnetic contribution (δA_{\parallel}) \rightarrow stochastic field lines
- ETG also a possible transport mechanism
 - Unstable in some regions, can drive significant transport
 - Transport from nonlinear ETG simulations decreases with increasing ν_{e} opposite to experimental trend

Experimental motivation - strong collisionality scaling in STs

() NSTX

52nd APS-DPP, Chicago (Guttenfelder)

Dimensionless v^* scans – basis of microstability analysis

() NSTX

52nd APS-DPP, Chicago (Guttenfelder)

Experimental profiles of dimensionless parameters

Factor ~5 variation in v_* , additional (non-ideal) variation in other dimensionless parameters

The following simulations are based on high v_* NSTX discharge 120968 (mostly r/a=0.6) Calculations were also performed for MAST discharges with similar results (not shown)

Scaling of linear microtearing instability

GYRO^{*} used for gyrokinetic simulations

- Eulerian solver of gyrokinetic-Maxwell equations
- Can use experimental profile variations, T(r), n(r), q(r), etc... (likely important in ST, ρ_s/a~1/100-1/50)
- Fully collisional & electromagnetic (both important in NBI heated ST)
- Freedom to include toroidal flow and flow shear (important in NBI heated ST)
- Substantial user-friendly documentation*
- Can be run in the local flux-tube limit (ρ/a→0, flat profiles, similar to FULL, GS2, GENE, GKW, etc...) for
 - Code benchmarking
 - Comparing "local" limit (flat profiles, $\rho_* \rightarrow 0$) with "global" (experimental profiles)
- Following linear calculations performed in the local, flux-tube limit

*J. Candy & R.E. Waltz, Phys. Rev. Lett 91, 045001 (2003); J. Comp. Physics 186, 545 (2003); https://fusion.gat.com/theory/Gyro

Microtearing modes found to be unstable in high ν_{\star} discharge

- Microtearing dominates $k_{\theta}\rho_s < 1$ in outer half-radius (r/a=0.5-0.8)
 - Resonant tearing parity in A_{\parallel} (δB_r =-ik_{$\theta}A_{\parallel}$)</sub>
 - Extended potential eigenfunctions in ballooning space
 - Real frequencies in electron diamagnetic direction
- ETG becomes unstable at outermost locations (r/a=0.7-0.8, not shown)

Linear microtearing instability

- High-m tearing mode around a rational $q(r_0)=m/n$ surface $(k_{||}(r_0)=0)$
- Driven by ∇T_e with parallel thermal force, *requires collisionality* (Classical tearing mode stable for large m, Δ'≈-2m/r<0)
- Imagine helically resonant (q=m/n) δB_r perturbation
- δB_r leads to radially perturbed field line, finite island width
- \nabla T_e projected onto field line gives parallel gradient

h
$$w = 4 \left(\frac{\delta B_r}{B} \frac{Rq^2}{mq'} \right)^{1/2}$$

 $\nabla_{\parallel} T_{e0} = \frac{\vec{B} \cdot \nabla T_{e0}}{B} = \frac{\delta B_r}{B} \nabla T_{e0}$

 $\delta B_r \sim \cos(m\theta - n\phi)$

- Parallel thermal force $(R_{T\parallel} \approx -n_e \nabla_{\parallel} T_e)$ drives parallel electron current that reinforces $\delta B_r \rightarrow instability$
- Requires ∇T_e, finite β, positive magnetic shear (dq/dr) & energy dependent collision operator

Microtearing instability exhibits a threshold in temperature gradient

- Growth rates increase with a/L_{Te} , apparent threshold $(a/L_{Te})_{threshold} \approx 1.3-1.5$
- (a/L_{Te})_{threshold}~0.5 in Wong et *al*. (2008) (NSTX discharge 116313 r/a = 0.5)
- ω_r proportional with a/L_{Te} (and a/L_n) $\omega \approx \omega_{*e} = (k_{\theta}\rho_s) \cdot (a/L_n + a/L_{Te}) \cdot (c_s/a)$

At r/a=0.6, linear scaling with v_e consistent with global τ_E scaling trend

- Growth rates decrease with $v_e < v_{e,exp}$ (in the direction of the experimental v_* scan)
- Scaling with v_e not simply monotonic transition to TEM at very low v_e
- Farther out (r/a=0.8) larger a/L_{Te}, a/L_n, and trapping (ε) leads to larger TEM growth rate at low collisionality
- Transition to microtearing occurs at higher v_e but still in experimental range

Similar scaling calculated for MAST 22769 r/a=0.6

Finite beta critical to instability

- At experimental v_e , lowering beta stabilizes microtearing \rightarrow no instability remains
- KBM becomes unstable at much larger β_e (not shown)
- Microtearing dynamics insensitive to compressional magnetic perturbations ($\delta B_{||}$)

Mapping out stability space via $\nu_{e}\text{-}\beta_{e}$ regime diagram

- Artificially varying v_e and β_e (inconsistently holding $\nabla \beta_{eq}$ constant) for fixed $k_{\theta}\rho_s$ =0.63 (n=30)
- At this location, microtearing mode dominates over wide range of v_e and β_e
- There appears to be a broad stable region at much lower collisionality
- Onset of KBM is sensitive to δB_{\parallel} (included below)

Low v_* discharge near microtearing ∇T_e threshold

- Calculations for low v_{*} discharge (NSTX 120982) are stable (r/a=0.5) or near marginal (r/a=0.6-0.8)
- Consistent with above v_e - β_e regime diagram, but other parameters changing

Structure of linear microtearing modes

Linear convergence sensitive to resolving narrow inner layer

- Growth rates most sensitive to radial resolution (Δx) at higher $k_{\theta} \rho_s$
- "Semi-collisional" regime of microtearing modes $v_{ei} \sim |\omega|$ (Drake & Lee, 1977)
 - Inner layer width Δ_d theoretically determined by balance of drift frequency ω_{*_e} with Doppler shift due to parallel electron diffusion ω_d
 - $\Rightarrow \omega_{*e} \sim \omega_{d} = (k_{||}v_{te})^{2}/\nu, \ k_{||} = k_{y}\Delta_{d}/L_{s} \Rightarrow \Delta_{d} \sim 0.07 \ \rho_{s} \ (\text{for } k_{\theta}\rho_{s} = 0.6)$

Linear growth rate converged for $\Delta r \approx 0.03 \rho_s$ (for $k_{\theta} \rho_s = 0.6$)

Linear mode structure in perpendicular (r, α) plane illustrates microtearing mode dynamics

Field line integration used to map island

- δB_r in linear run (arbitrary) determines $w_{island} \sim 0.4 \rho_s$
- Slab/cylindrical island width estimate does not work well (δB_r strongly ballooning)

$$\frac{\delta B_{r,mn}}{B} = 1.8 \cdot 10^{-7}$$
$$w = 4 \cdot \left[\frac{\delta B_{r,mn}}{B} \frac{rR}{n\hat{s}} \right]^{1/2} = 0.03\rho_s$$

• Estimate using rms δB_r gets closer

$$\left| \left\langle \frac{\delta B_{r}^{2}}{B^{2}} \right\rangle_{\alpha,\theta} \right|^{1/2} = 2.5 \cdot 10^{-5}$$
$$w = 4 \cdot \left[\left(\frac{\delta B_{r}}{B} \right)_{rms} \frac{rR}{n\hat{s}} \right]^{1/2} = 0.39\rho_{s}$$

- $w_{island}/L_{Te} \approx 8.10^{-3}$ but max($\delta T_e/T_e$) $\approx 4.5.10^{-4}$
- ⇒ Influence of perpendicular drift dynamics

Linear mode structure in toroidal (R,Z) plane

- Nonuniform poloidal structure (comparing inboard and outboard perturbations)
- Density perturbations radially narrow, extended vertically on outboard side
- \Rightarrow "High-k" scattering diagnostic (see adjacent poster by Y. Ren) well suited for k_r >> k₀

First *nonlinear* microtearing mode simulations in NSTX

Summary of first nonlinear microtearing simulations in NSTX

- Local, flux-tube simulations (flat profiles) at r/a=0.6 (NSTX 120968) where only microtearing unstable (no ETG)
 - Electromagnetic (ϕ , A_{\parallel}) and collisional (v_e)
 - Varying E×B shear

- $L_x \times L_y = 80 \times 60\rho_s$ $n_x \times n_y = 400 \times 8 \quad (\Delta x = 0.2 \rho_s)$ $n_\theta = 14 \text{ (parallel orbits)}$ $n_\lambda = 12, n_E = 8 \text{ (velocity space)}$
- Significant transport predicted, depending on $\gamma_{\rm E}/\gamma_{\rm lin}$
 - Fine radial resolution required ($\Delta x \le 0.2 \rho_s$)
 - Transport dominated by electromagnetic component
 - Field lines are stochastic
 - Transport reduced with significant E×B shear

Fine radial resolution required to capture *linear* resonant layers

- Calculating linear growth rate for single mode ($k_{\theta}\rho_s$ =0.63, n=30) using box width and resolution of nonlinear simulations
- L_x=80 $ρ_s$, Δx=0.4 & 0.2 $ρ_s$
- (1) $\Delta x=0.4 \rho_s$ is barely small enough to distinguish resonant layers
- (2) $\Delta x=0.2 \rho_s$ resembles the...
- (3) high resolution flux-tube case

52nd APS-DPP, Chicago (Guttenfelder)

Fine radial resolution required for resolved nonlinear spectra

- k_x spectra completely different for $\Delta x=0.4 \rightarrow 0.2\rho_s$
- Insufficient resolution leads to peaking at high k_x similar to GS2 simulations in Applegate Ph.D. thesis (2007, Imperial College London)

() NSTX

52nd APS-DPP, Chicago (Guttenfelder)

Narrow density perturbations remain in nonlinear simulations

- Narrow radial n, ϕ , j_{\parallel} structures need to be resolved but A_{\parallel} very broad
- $\delta B_r/B \sim 8.7 \times 10^{-4} \sim \rho_e/L_{Te} = 3.4 \times 10^{-4}$
- $\delta B_r/B \sim \rho_e/L_{Te}$ analytic approximation from Drake et al. PRL 1980; used for NSTX in Wong et al. PRL 2007

 $\delta T_e/T_e \approx 2\%$ $\delta v_{e,\parallel}/c_s \approx 6\%$

Perturbed field lines are stochastic

w_{island}(n) > Δr_{rat}(n), island overlap → perturbed field line trajectories are stochastic
 ~97% of transport from EM contribution χ_{e,EM}
 χ_{e,EM} well described by *collisionless* Rechester-Rosenbluth (λ_{mfp}=25 m, qR=1.6 m)
 → see invited talk by Eric Wang, NI2:03 Wed. 10:30 am

Nonlinear microtearing transport sensitive to $\gamma_{\rm E}/\gamma_{\rm lin}$

- With <u>no</u> E×B shear predicted transport (1.2 ρ_s²c_s/a) comparable to experimental transport (1.0-1.6 ρ_s²c_s/a)
- Transport reduced when increasing γ_E to local experimental value

- Simulations are underway to investigate (1) convergence with binormal resolution $(k_{\theta}\rho_{s,max})$ and (2) sensitivity to a/L_{Te} , β_e , v_e
- Above are local simulations, but ρ_s/a=0.08 & physical domain r/a=0.3-0.9 → have not investigated influence of profile variations, e.g. a/L_{Te}(r), γ_E(r), q(r)

Unclear how χ_e will scale with v_e

- Linear growth rate scaling $\gamma_{lin} \sim v_e$ may (or may not) influence saturated $\delta B_r/B$ and ۲ resulting D_{st}
- Similar trend may (or may not) hold from linear β_{e} scaling
- Nonlinear simulations in progress
- Collisional R-R model used by Wong et al.* for NSTX 116313 :

$$\chi_{st}^{Wong} = D_{st} \frac{\chi_{e,\parallel}}{L_c} = \left(\left| \frac{\delta B_r}{B} \right|^2 R \right) \frac{v_{Te} \lambda_{mfp}}{qR} = \left(\frac{\rho_e}{L_{Te}} \right)^2 \frac{v_{Te}^2}{v_{ei}q}$$

- *inversely* dependent on v_{ρ}
- no explicit dependence on β_{e}
- very sensitive to T_e and ∇T_e $\chi_{st}^{Wong} \propto T_e^{3/2} \cdot (\nabla T_e)^2 = T_e^{7/2} \cdot \left(\frac{1}{L_{Te}}\right)^2$
- "knows" nothing about linear thresholds

*K.L. Wong et al., Phys. Rev. Lett 99, 135003 (2007); Phys. Plasmas 15, 056108 (2008)

May expect significant intensity in high-k scattering from microtearing

- Comparable $\delta n/n$ predicted for ETG (2.8×10⁻³) and microtearing (1.7×10⁻³)
- But ETG spectrum much broader in $k_{\theta}\rho_s \rightarrow less$ intensity per unit $\Delta k_x \cdot \Delta k_v$
- Application of synthetic "high-k" diagnostic to simulations beginning (see adjacent posters by F.M. Poli & Y. Ren)

Nonlinear ETG simulations in MAST – v_* scaling

Decreasing collisionality destabilizes lower $k_{\theta}\rho_{e}$ ETG modes where transport dominates

- Little change in peak growth rates when scaling only v_e
- Lower $k_{\theta}\rho_{e}$ are destabilized (trapped electron contributions)
- Small increase in non-linear transport (~15% at v_{ei} =0) \rightarrow inconsistent with experimental scaling

⁽⁾ NSTX

Peak growth rates reduced when directly comparing low v_{*} discharge

• Small changes in other dimensionless parameters add up

 Pursuing integrated transport predictions (e.g. with TGLF+NEO) including all experimental variations (see adjacent poster by J.L. Peterson)