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Overview

• Favourable τE,th ~ ν*
-(0.7-0.9) dependence in STs

– Physical origin unclear, could influence design of next-generation device at low ν*

• Microtearing modes found to be unstable in experimental ν* scans
– Scaling of linear growth rates γlin ~ νe – potential candidate to explain experimental 

confinement trend
– Linear thresholds exist in νe, βe, a/LTe

⇒ First non-linear microtearing simulations in NSTX
– Require relatively fine radial resolution (Δx≈0.2ρs, nx=400) to capture physics
– Significant transport predicted without E×B shear
– Dominated by electromagnetic contribution (δA||) → stochastic field lines

• ETG also a possible transport mechanism
– Unstable in some regions, can drive significant transport
– Transport from nonlinear ETG simulations decreases with increasing νe – opposite to 

experimental trend
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Experimental motivation - strong collisionality scaling in STs
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• Next generation ST (high heat flux, CTF, …) 
likely to be at lower ν*

• Present ST confinement scaling with ν*
favorable ⇒ will it hold at lower ν*?
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• Large (Ip+BT) scaling related 
to strong ν* scaling 
(assuming gyroBohm ρ*
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⇒ What physical mechanisms 
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Dimensionless ν* scans – basis of microstability analysis
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NSTX 120968  Ip / BT / PNBI - 0.7 MA / 0.35 T / 4 MW
NSTX 120982  Ip / BT / PNBI - 1.1 MA / 0.55 T / 4 MW
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Factor ~5 variation in ν*, additional (non-ideal) variation in other dimensionless parameters

The following simulations are based on high ν* NSTX discharge 120968 (mostly r/a=0.6)
Calculations were also performed for MAST discharges with similar results (not shown)

Experimental profiles of dimensionless parameters
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Scaling of linear microtearing
instability
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GYRO* used for gyrokinetic simulations

• Eulerian solver of gyrokinetic-Maxwell equations
• Can use experimental profile variations, T(r), n(r), q(r), etc… (likely 

important in ST, ρs/a~1/100-1/50)
• Fully collisional & electromagnetic (both important in NBI heated ST)
• Freedom to include toroidal flow and flow shear (important in NBI heated 

ST)
• Substantial user-friendly documentation*

• Can be run in the local flux-tube limit (ρ/a→0, flat profiles, similar to 
FULL, GS2, GENE, GKW, etc…) for

– Code benchmarking
– Comparing “local” limit (flat profiles, ρ*→0) with “global” (experimental profiles)

• Following linear calculations performed in the local, flux-tube limit
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*J. Candy & R.E. Waltz, Phys. Rev. Lett 91, 045001 (2003);  J. Comp. Physics 186, 545 (2003);  https://fusion.gat.com/theory/Gyro
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Microtearing modes found to be unstable in high ν* discharge

• Microtearing dominates kθρs<1 in outer half-radius (r/a=0.5-0.8)
– Resonant tearing parity in A|| (δBr=-ikθA||)
– Extended potential eigenfunctions in ballooning space
– Real frequencies in electron diamagnetic direction

• ETG becomes unstable at outermost locations (r/a=0.7-0.8, not shown)
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electron diamagnetic
direction r/a=0.6 

kθρs = 0.53 (n=25)

real frequencies growth rates Eigenfunctions in “ballooning” space
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Linear microtearing instability

• High-m tearing mode around a rational q(r0)=m/n surface (k||(r0)=0)
• Driven by ∇Te with parallel thermal force, requires collisionality

(Classical tearing mode stable for large m, Δ′≈-2m/r<0)

• Imagine helically resonant (q=m/n) δBr perturbation

• δBr leads to radially perturbed field line, finite island width

• ∇Te projected onto field line gives parallel gradient

• Parallel thermal force (RT||≈-ne∇||Te) drives parallel electron current that reinforces 
δBr → instability

• Requires ∇Te, finite β, positive magnetic shear (dq/dr) & energy dependent 
collision operator
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Microtearing instability exhibits a threshold in temperature 
gradient

• Growth rates increase with a/LTe, apparent threshold (a/LTe)threshold ≈1.3-1.5
• (a/LTe)threshold~0.5 in Wong et al. (2008) (NSTX discharge 116313 r/a = 0.5)
• ωr proportional with a/LTe (and a/Ln)  ω ≈ ω*e = (kθρs)⋅(a/Ln+a/LTe)⋅(cs/a)
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a/LTe,exp=2.7

real frequencies growth rates
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At r/a=0.6, linear scaling with νe consistent with global τE
scaling trend

• Growth rates decrease with νe < νe,exp (in the direction of the experimental ν* scan)
• Scaling with νe not simply monotonic – transition to TEM at very low νe

• Farther out (r/a=0.8) larger a/LTe, a/Ln, and trapping (ε) leads to larger TEM growth 
rate at low collisionality

– Transition to microtearing occurs at higher νe but still in experimental range
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Exp. values

Similar scaling calculated 
for MAST 22769 r/a=0.6

growth rates

r/a=0.6

r/a=0.8
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Finite beta critical to instability

• At experimental νe, lowering beta stabilizes microtearing → no instability 
remains

• KBM becomes unstable at much larger βe (not shown)
• Microtearing dynamics insensitive to compressional magnetic 

perturbations (δB||)
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Mapping out stability space via νe-βe regime diagram

• Artificially varying νe and βe (inconsistently holding ∇βeq constant) for fixed 
kθρs=0.63 (n=30)

• At this location, microtearing mode dominates over wide range of νe and βe

• There appears to be a broad stable region at much lower collisionality
• Onset of KBM is sensitive to δB|| (included below)

13

Exp. values

Similar regime diagram for 
MAST 22769 r/a=0.6
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Low ν* discharge near microtearing ∇Te threshold

• Calculations for low ν* discharge (NSTX 120982) are stable (r/a=0.5) or near 
marginal (r/a=0.6-0.8)

• Consistent with above νe-βe regime diagram, but other parameters changing

14

growth rates  r/a=0.6 growth rates  r/a=0.7
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Structure of linear microtearing
modes
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Linear convergence sensitive to resolving narrow inner layer

• Growth rates most sensitive to radial resolution (Δx) at higher kθρs

• “Semi-collisional” regime of microtearing modes νei~|ω| (Drake & Lee, 1977)
– Inner layer width Δd theoretically determined by balance of drift frequency ω*e with 

Doppler shift due to parallel electron diffusion ωd

⇒ ω*e ∼ ωd=(k||vte)2/ν,  k||=kyΔd/Ls ⇒ Δd~0.07 ρs (for kθρs=0.6)
Linear growth rate converged for Δr≈0.03 ρs (for kθρs=0.6)
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electron diamagnetic
direction

νei = 1.4 cs/a

real frequencies growth rates
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Linear mode structure in perpendicular (r,α) plane illustrates 
microtearing mode dynamics

• Narrow resonant current channel (≈0.3ρs) centered on rational surface (compare to simple 
slab Δd~0.07ρs estimate above)

• “Constant ψ” (A||), resonant tearing parity
• Nearly unmagnetized/adiabatic ion response   ⇒
• Narrow potential, density, Te perturbations
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Field line integration used to map island

• δBr in linear run (arbitrary) determines wisland ~ 0.4 ρs

• Slab/cylindrical island width estimate does not work well (δBr strongly ballooning)

• Estimate using rms δBr gets closer

• wisland/LTe ≈ 8⋅10-3 but
max(δTe/Te) ≈ 4.5⋅10-4

⇒ Influence of perpendicular
drift dynamics
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Linear mode structure in toroidal (R,Z) plane

• Nonuniform poloidal structure (comparing inboard and outboard perturbations)
• Density perturbations radially narrow, extended vertically on outboard side
⇒ “High-k” scattering diagnostic (see adjacent poster by Y. Ren) well suited for kr >> kθ
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First nonlinear microtearing
mode simulations in NSTX

20
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Summary of first nonlinear microtearing simulations in NSTX

• Local, flux-tube simulations (flat profiles) at r/a=0.6 (NSTX 120968) where only 
microtearing unstable (no ETG)
– Electromagnetic (ϕ, A||) and collisional (νe)
– Varying E×B shear

• Significant transport predicted, depending on γE/γlin

– Fine radial resolution required (Δx≤0.2ρs)
– Transport dominated by electromagnetic component
– Field lines are stochastic
– Transport reduced with significant E×B shear

21

Lx×Ly=80×60ρs

nx×ny=400×8  (Δx=0.2 ρs)
nθ=14 (parallel orbits)
nλ=12, nE=8 (velocity space)
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Fine radial resolution required to capture linear resonant 
layers

Calculating linear growth rate for single 
mode (kθρs=0.63, n=30) using box 
width and resolution of nonlinear 
simulations

Lx=80 ρs, Δx=0.4 & 0.2 ρs

(1) Δx=0.4 ρs is barely small enough to 
distinguish resonant layers

(2) Δx=0.2 ρs resembles the...

(3) high resolution flux-tube case

22

Lx  = 80 ρs

nx = 200
Lx  = 80 ρs

nx = 400

“Typical” flux tube
Lx  = 0.9 ρs = (Δr)rat

nx = 32
(1) (2) (3)
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Fine radial resolution required for resolved nonlinear spectra

• kx spectra completely different for Δx=0.4→0.2ρs

• Insufficient resolution leads to peaking at high kx similar to GS2 simulations in Applegate Ph.D. 
thesis (2007, Imperial College London)

23

Δx = 0.4 ρs

Δx = 0.2 ρs
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Narrow density perturbations remain in nonlinear simulations

• Narrow radial n, ϕ, j|| structures need to be resolved but A|| very broad
• δBr/B ~ 8.7×10-4 ~  ρe/LTe = 3.4×10-4

• δBr/B ~ ρe/LTe analytic approximation from Drake et al. PRL 1980; used for NSTX 
in Wong et al. PRL 2007

24

δn/n ≈ 0.5%
δBr/B ≈ 0.09%

δTe/Te ≈ 2%
δve,||/cs ≈ 6%

δA||/csTe ≈ 0.8%
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Perturbed field lines are stochastic

• wisland(n) > Δrrat(n), island overlap → perturbed field line trajectories are stochastic
⇒ ~97% of transport from EM contribution χe,EM
• χe,EM well described by collisionless Rechester-Rosenbluth (λmfp=25 m, qR=1.6 m)

→ see invited talk by Eric Wang, NI2:03 Wed. 10:30 am
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Nonlinear microtearing transport sensitive to γE/γlin

• With no E×B shear predicted transport (1.2 ρs
2cs/a) comparable to experimental 

transport (1.0-1.6 ρs
2cs/a)

• Transport reduced when increasing γE to local experimental value

• Simulations are underway to investigate (1) convergence with binormal resolution 
(kθρs,max) and (2) sensitivity to a/LTe, βe, νe

• Above are local simulations, but ρs/a=0.08 & physical domain r/a=0.3-0.9 → have 
not investigated influence of profile variations, e.g. a/LTe(r), γE(r), q(r)
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Fractional transport spectra

χe exp
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Unclear how χe will scale with νe

• Linear growth rate scaling γlin~νe may (or may not) influence saturated δBr/B and 
resulting Dst

• Similar trend may (or may not) hold from linear βe scaling
⇒ Nonlinear simulations in progress

• Collisional R-R model used by Wong et al.* for NSTX 116313 :

– inversely dependent on νe

– no explicit dependence on βe

– very sensitive to Te and ∇Te

– “knows” nothing about linear thresholds
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May expect significant intensity in high-k scattering from 
microtearing

• Comparable δn/n predicted for ETG (2.8×10-3) and microtearing (1.7×10-3)
• But ETG spectrum much broader in kθρs → less intensity per unit Δkx⋅Δky

• Application of synthetic “high-k” diagnostic to simulations beginning (see adjacent 
posters by F.M. Poli & Y. Ren)
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Nonlinear ETG simulations in 
MAST – ν* scaling
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Decreasing collisionality destabilizes lower kθρe ETG modes 
where transport dominates

• Little change in peak growth rates when scaling only νe

• Lower kθρe are destabilized (trapped electron contributions)
• Small increase in non-linear transport (~15% at νei=0) → inconsistent with 

experimental scaling
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Peak growth rates reduced when directly comparing low ν*
discharge

• Small changes in other dimensionless parameters add up

• Pursuing integrated transport predictions (e.g. with TGLF+NEO) including all 
experimental variations (see adjacent poster by J.L. Peterson)
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high ν* discharge

low ν* discharge
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