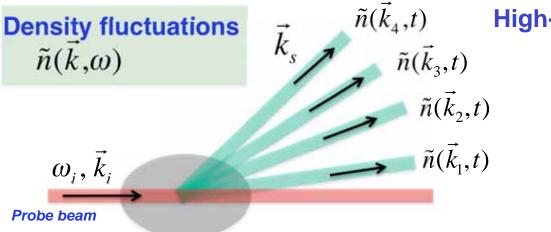
Abstract

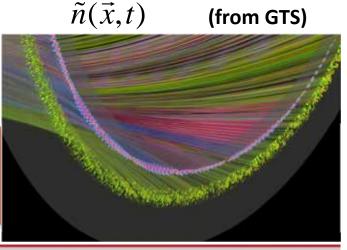
The comparison between density fluctuations measured with coherent scattering techniques and spectra from space resolved fluctuations computed from nonlinear gyro-kinetic codes are affected by a number of systematic errors and uncertainties. These include the scattering localization, the different wavenumber range covered, the simulation runtime, which mainly affect the slope of the k-spectrum. To bridge the gap between experiments and simulations, a synthetic diagnostic has been developed. Taking into account the beam propagation, the beam intensity profile, the instrument transfer function, the synthetic high-*k* predicts the collection efficiency in the (k_r , k_{θ}) space. When simulated spectra are filtered by the synthetic high-*k*, a closer agreement with experiments is found. Results from nonlinear simulations run in different plasma configurations, including L-mode and H-mode, will be presented.

Work supported by US DOE Contract DE-AC02-09CH11466 and the SciDAC GPS-TTBP project.



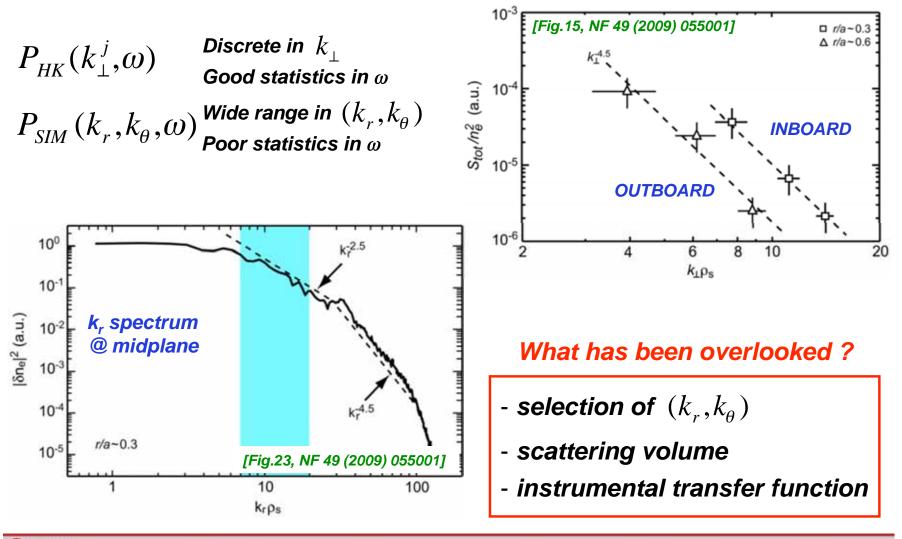
Outline

- Work motivated by
 - the observation of electrostatic turbulence on NSTX, in a wavenumber range consistent with ETG instabilities [*Mazzucato et al, PRL, 101, 075001 (2008)*]
 - The increasing availability of nonlinear, global, ETG simulations
 - The need of cross-validating measurements and simulations
- What we have done
 - Developed a synthetic diagnostic for high-k scattering
 - Looked up the possible sources of systematic errors
- In this work:
 - Description of the synthetic high-k scattering diagnostics
 - Interface with two different global, gyrokinetic codes
 - GTS (WX Wang et al, Phys. Plasmas 13 092505 (2006))
 - GYRO (J. Candy and R. Waltz, Journal Comp. Physics, 186-545 (2003))
 - Future development


High-k scattering measurements are local in space and limited in wavenumber range

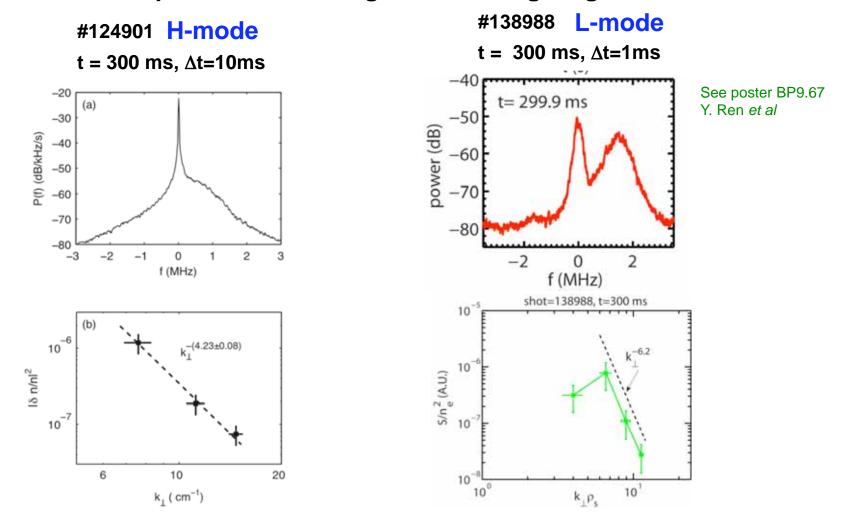
gh-k scattering measures
$$\{k_{\perp} \ \vec{k} = \vec{k}_s - \vec{k}_i$$

 $\omega_i >> \omega => \text{Small } \theta_s$
 $k = 2k_i \sin(\theta_s/2)$


simulations cover annulus of plasma => (k_r, k_{θ}) spectrum can be extracted

 $egin{aligned} P_{_{SIM}}\left(k_{_{r}},k_{_{ heta}},\omega
ight) & ext{almost 2 orders of magnitude} \ P_{_{HK}}(k_{_{ot}},\omega) & ext{finite range of } k_{_{ot}} \end{aligned}$

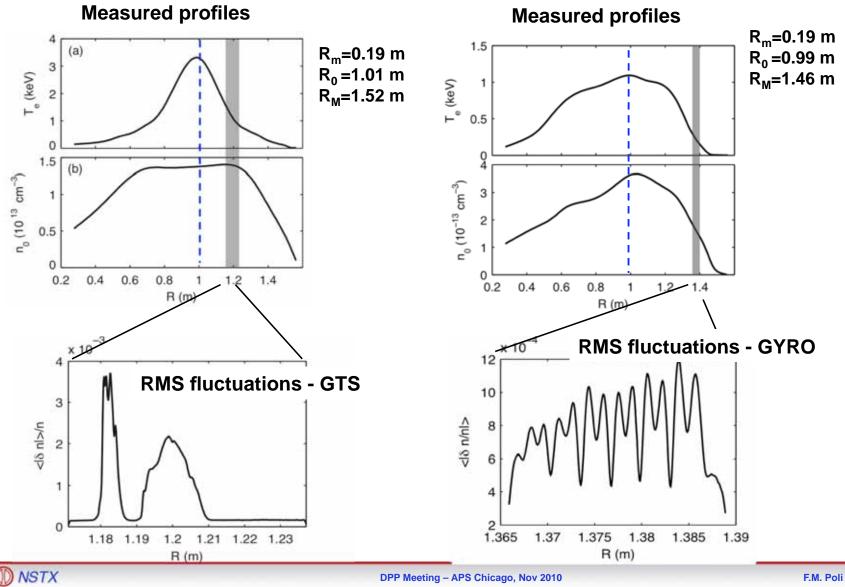
0 NSTX


A direct comparison may lead to fortuitous agreement

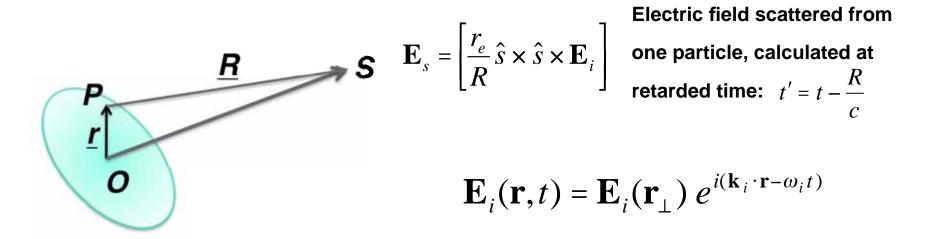
NSTX

F.M. Poli

Two cases study: L-mode and H-mode plasma Turbulence spectra from the high-k scattering diagnostic


Level of fluctuations is similar, but spectra are steeper in L-mode

NSTX

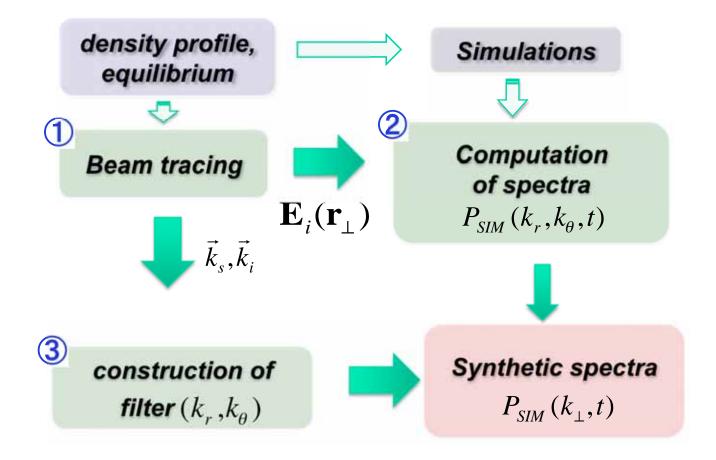

DPP Meeting – APS Chicago, Nov 2010

H-mode #124901

L-mode #138988

The ingredients for the synthetic high-k are contained in the expression for the measured electric field

Fourier Transform of density fluctuations weighted by the beam intensity

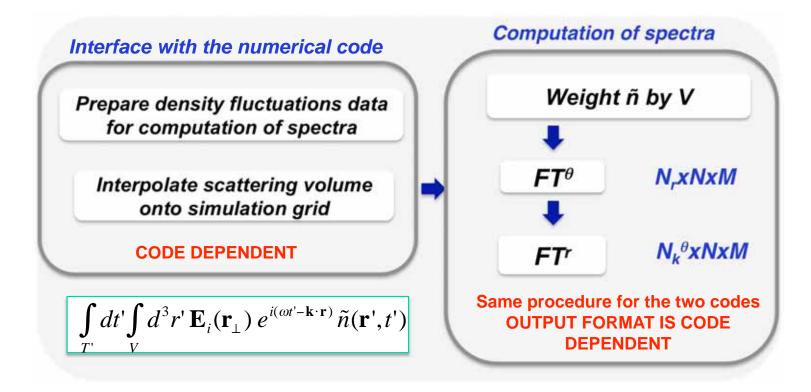

$$\mathbf{E}_{s}(\boldsymbol{v}_{s}) = \frac{r_{e}}{x} e^{i\mathbf{k}_{s}\cdot\mathbf{x}} (\hat{s}\hat{s}-\mathbf{1}) \int_{T'} dt' \int_{V} d^{3}r' \mathbf{E}_{i}(\mathbf{r}_{\perp}) e^{i(\omega t'-\mathbf{k}\cdot\mathbf{r})} \tilde{n}(\mathbf{r}',t')$$

Direction & amplitude of k_s

Amplitude profile of beam (size of the scattering volume)

Three standalone blocks in the synthetic high-k

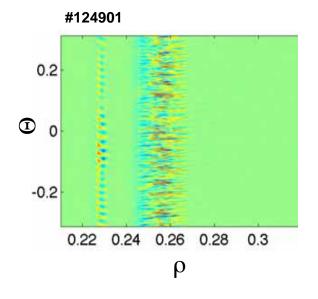
Block 2: computation of spectra

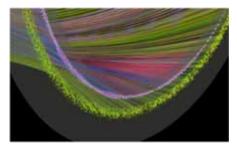

From beam tracing

INPUT: Scattering volume V centered @ (R_s,z_s)

From simulations

 $\tilde{n}(r,\theta,\varphi_i,t_j) \qquad \begin{array}{c} \varphi_1\cdots\varphi_M \\ t_1\cdots t_N \end{array}$


Each poloidal plane is independent


Interface with GTS*: spectra are computed in real coordinates

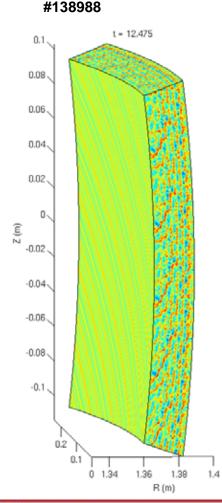
[* WX Wang et al, Phys. Plasmas 13 092505 (2006)]

Simulation using:

- numerical equilibrium
- experimental parameters
- electrostatic
- adiabatic ions

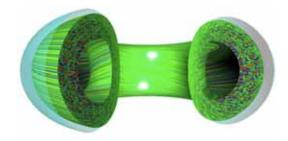
 (ρ, θ) grid not regular

- $\Delta\rho,\,\Delta\theta$ are set by Larmor radius ρ_e
- $\Delta \theta$ is regular on each flux surface, it changes between flux surfaces


64 planes: toroidal separation comparable to scattering volume extension => each plane is dealt with independently

Compute spectra in real coordinates => *k* directly compared with exps

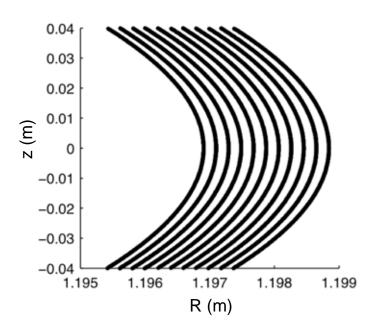
0 NSTX


Interface with GYRO*: spectra are computed in flux coordinates

[* J. Candy and R. Waltz, Journal Comp. Physics, 186-545 (2003)]

Local simulation using:

- numerical equilibrium
- experimental parameters
- finite collisionality
- toroidal flow and flow shear
- electrostatic (β_e is small)
- adiabatic ions (will ultimately use kinetic)

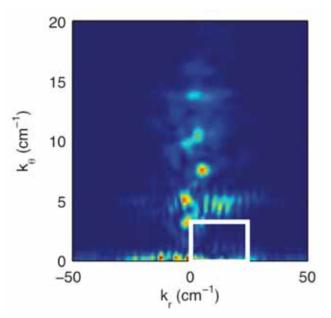


 (ρ, θ) grid regular => compute spectra in flux coordinates

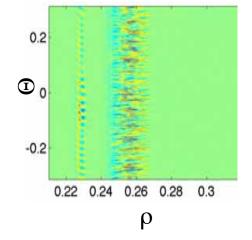
Periodicity along toroidal direction => need only a finite number of planes (50 for this simulation)

=> need to convert k to physical units to compare with experiments

Interface with GTS: k_{θ} spectra are computed in real space along a pseudo-polar direction


 Along each flux surface in real space (R,z) we construct a trajectory :

$$ds_{j} = \sqrt{(R_{j+1} - R_{j})^{2} + (z_{j+1} - z_{j})^{2}}$$


- 2. Interpolate density along this trajectory using the same step for all flux surface (to have the same k_N)
- 3. Compute Fourier Transform using the same number of points (to have the same Δk_{θ})
- => The Fourier components depend only on the value of R at midplane $\tilde{n}(R_{mid}, k_{\theta}, t_i)$

PROBLEM: in order to compute the transform along R, we need to interpolate amplitude and phase of Fourier components

Interface with GTS: density fluctuations are interpolated in flux coordinates

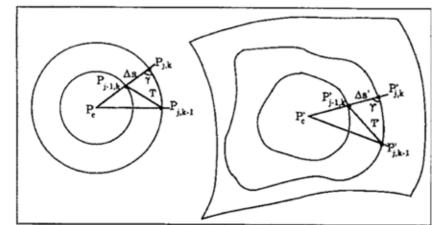
phase interpolation generates artificial structures in k_r, due to phase jumps where density structures are localized.



This issue can be overcome by pre-processing density fluctuations in flux coordinates

- ••• interpolate along $\rho \Rightarrow$ uniform $\Delta R @$ midplane
- ••• redistribute data along θ

 $\begin{cases} \frac{d\mathbf{x}}{dt} = -\frac{\partial D/\partial \mathbf{k}'}{\partial D/\partial \omega} \\ \frac{d\mathbf{k}'}{dt} = \frac{\partial D/\partial \mathbf{x}}{\partial D/\partial \omega} \end{cases}$ Ray tracing equations
Solved in cylindrical geometry (R, φ ,z), assuming an equal (and small) time step for all rays $D(\mathbf{x}, \mathbf{k}', \omega) = (k')^2 - \left(\frac{\omega}{c}\right)^2 [n^2 + (\nabla I)^2] = 0$ Dispersion relation (Hartree-Fock)

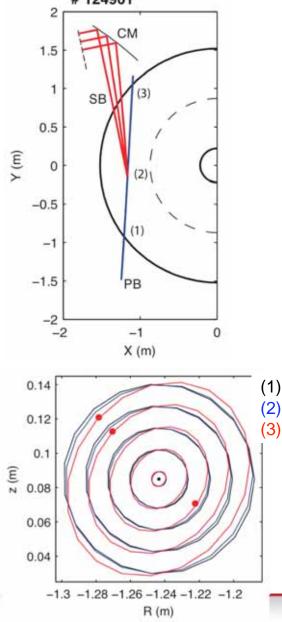

Block 1: Beam tracing*

* [Nowak and Orefice, Phys. Plasmas 1 1242 (1994)]

The term $(\nabla I)^2$ introduces a 'symmetry breaking' also in axisymmetric configurations => $\partial/\partial \varphi \neq 0$

• Compute the components of $\nabla(\nabla I)^2$ using triangulation along directions s_1, s_2, s_3

From the point $P(x,y,z)=P'_{j,k}$ s_1 , towards $P_1(x_1,y_1,z_1)=P_{j,k}$ (along the ray) s_2 , towards $P_2(x_2,y_2,z_2)=P'_{j,k-1}$ s_3 , towards $P_3(x_3,y_3,z_3)=P'_{j-1,k}$

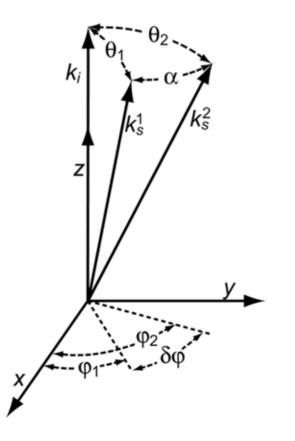


[Fig.2 from Nowak and Orefice, Phys. Plasmas 1 1242 (1994)]

$$\frac{d(\nabla I)^{2}}{ds_{i}} = \frac{\left[\nabla I(P_{i})\right]^{2} - \left[\nabla I(P)\right]^{2}}{ds_{i}} = \frac{1}{ds_{i}} \left(d\varphi_{i}\frac{\partial}{\partial\varphi} + dR_{i}\frac{\partial}{\partial R} + dz_{i}\frac{\partial}{\partial z}\right) (\nabla I)^{2}$$
$$\left|\nabla I(P_{j,k}')\right| = \left|\frac{1}{\sin\gamma(P_{j,k})}\frac{\partial I(P_{j,k}')}{\partial s'}\right| \qquad \frac{\partial I(P_{j,k}')}{\partial s'} = \frac{\Delta s}{\Delta s'}\frac{\partial I(P_{j,k})}{\partial s}$$

Negligible distortion of the wave front at the location of # 124901 2

scattering


No appreciable spreading of the beam at the location of scattering (2) (high frequency beam) => Gaussian function used as a weighting function for density fluctuations on the poloidal plane

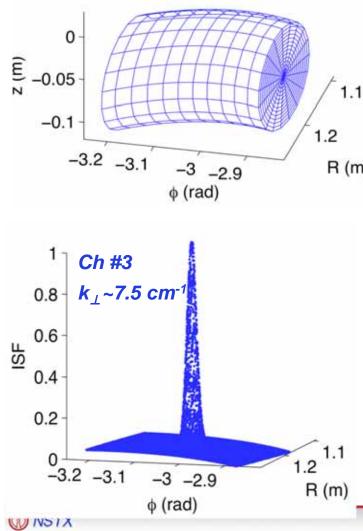
$$\int_{T'} dt' \int_{V} d^{3}r' \mathbf{E}_{i}(\mathbf{r}_{\perp}) e^{i(\omega t' - \mathbf{k} \cdot \mathbf{r})} \tilde{n}(\mathbf{r}', t')$$

 \Rightarrow full beam equations not necessary for the propagation and distortion of the beam, but important for the reconstruction of the 3D Instrumental Selectivity Function and of the filtering function (k_r, k_{θ}) for the simulated spectra

The collection efficiency is optimized at tangent injection

[E. Mazzucato, Phys. Plasmas 10 753 (2003)]

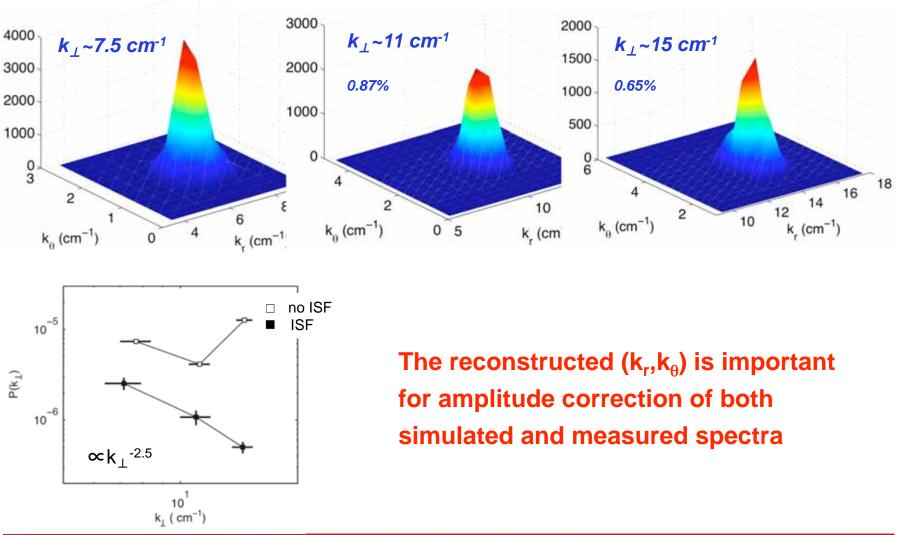
$$F = \exp(-\alpha^2 / \alpha_0^2) \qquad \alpha_0 = 2/k_i a$$
$$\alpha^2 \approx (\theta_2 - \theta_1)^2 + 4\theta_2 \theta_1 \sin^2(\delta \varphi / 2)$$


The collection efficiency depends on:

- the scattering angle
- direction of the magnetic field

Max efficiency for scattering along the detector line sight and for tangent injection.

The scattering volume is highly localized in the toroidal direction

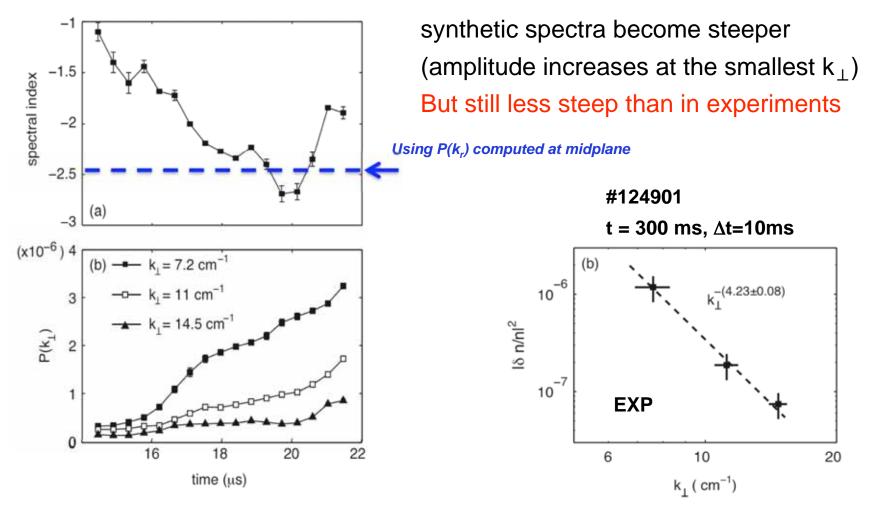


- 1. take a toroidal length $L = \frac{2a}{\sin(\theta_s)}$
- 2. Compute the collection efficiency for all k_i, θ_s within this volume
- $_{\text{R (m)}}$ The Instrumental Selectivity Function (ISF) is highly localized in φ
 - The resolution in (R,z) is affected by the alignment of incident and scattered beam
 - => Use a function for the receiving window

NEXT STEP UPGRADE :

use the 3D extension of the scattering volume for the computation of spectra. Include in the interface for both GTS and GYRO

The collection efficiency is used to reconstruct a (k_r, k_{θ}) filter for the simulation spectra

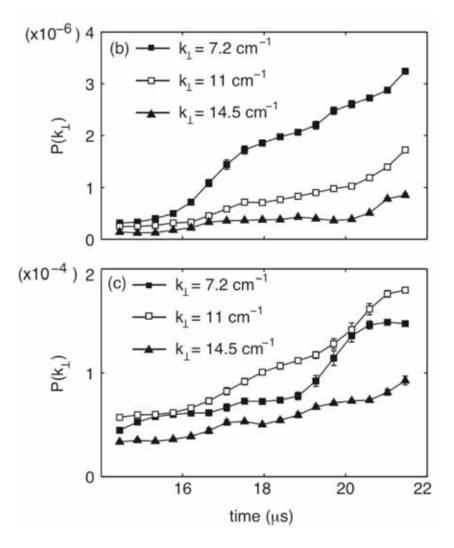


NSTX # 124901

F.M. Poli

Simulations must reach stationary phase for a meaningful comparison with experiments

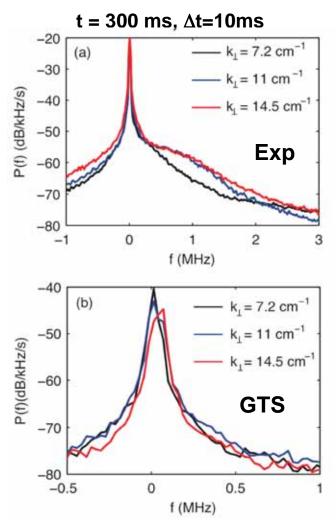
From GTS simulations

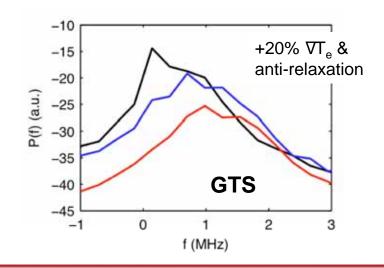


0 NSTX

The position of the scattering volume does not affect significantly the synthetic spectra, but its size does

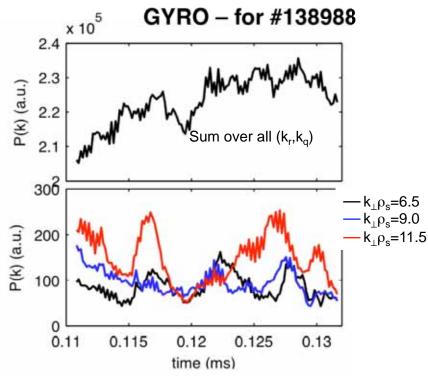
• Power-law dependence visible when the size of the scattering volume is taken into account (b)

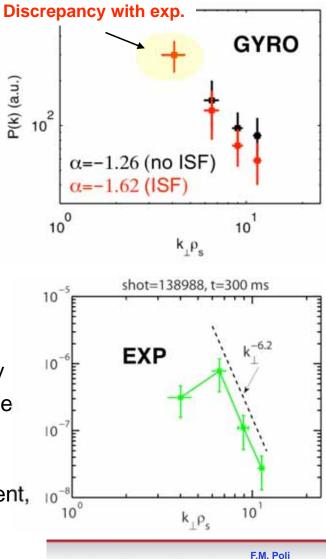

 Simulated spectra do not exhibit a power-law dependence in the wavenumber range of experiments (spectra computed without weighting for the beam intensity profile)



Frequency spectra are broader in experiments

#124901


- Peaking frequency is comparable when a
 Doppler shift of 500 kHz is taken into account (from rotation measurements)
- Simulated spectra are much narrower than measured spectra (left)
- Better match when ∇T_e is increased by 20% and using an 'anti-relaxation' algorithm to maintain the gradient drive (below)


NSTX

DPP Meeting – APS Chicago, Nov 2010

Spectral index less steep than in experiments also in L-mode

- Level of fluctuations appears to be statistically steady
- The ISF does not affect significantly the spectral slope
- the ISF cannot reproduce the dramatic decrease in amplitude at the lowest k
- Predicted ETG transport much smaller than experiment, may not be the dominant mechanism in this L-mode discharge

Summary

- The synthetic high-k scattering consists of standalone blocks (exportable to different codes)
- The computation of spectra uses only 1D interpolations and 1D FFTs

 \Rightarrow to minimize interpolation errors and maximize efficiency

- Systematic errors in the synthetic spectra:
 - Spectral index is mainly affected by:
 - Length of simulations
 - Localization of the scattering volume
 - Collection efficiency
 - errors due to imperfect mapping of equilibrium and experimental profiles have negligible effect on the ray tracing compared to the above

Conclusions and future directions

There is still a long path to go for validating ETG simulations against measurements (and vice-versa)

- The high-k scattering measures in a range of k_θ well below values where simulated ETG turbulence peaks; other instabilities could contribute to the measured level of fluctuation in this range
 - Maybe with a different experimental layout?
- Simulated spectra are less steep than measured spectra
 - Both in L-mode and H-mode simulations
 - With both GTS and GYRO codes
 - ⇒ There is still work to do on the simulations to reproduce the experiments
- Geometrical effects in the ISF are not sufficient to reproduce the measured spectral amplitude
 - ⇒ Need to improve the Instrumental Selectivity Function, maybe including energy calibration as a function of k

