

Supported by

Reflectometry and Backscattering for Broad- k_r Microturbulence Measurements in NSTX

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

S. Kubota, W.A. Peebles, S.J. Zweben¹, T.S. Hahm¹

University of California, Los Angeles, CA 90095 ¹Princeton Plasma Physics Laboratory, Princeton, NJ 08543

> 52nd Annual Meeting of the APS Division of Plasma Physics Chicago, IL November 8-12, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP**, Jülich **IPP**, Garching ASCR, Czech Rep **U** Quebec

Office of

Science

Abstract

On NSTX, the unique combination of reflectometry hardware (FM-CW, fixed-frequency, and correlation reflectometers) is well-suited to turbulence measurements in both core and edge plasmas. Recently, the FM-CW reflectometers have been used as radial backscattering diagnostics for probing microturbulence over a broad range of radial wavenumbers $(k_{r} \sim 0.20 \text{ cm}^{-1})$. This new method utilizes the reflection from the cut-off layer to determine a detailed reconstruction of the density profile. Time-of-flight information is then used to map frequencydiscriminated backscattered signals to radial locations away from the cutoff layer, allowing the visualization of turbulence in k_r vs R (major radius) space with excellent space and time resolution. Further details of the method will be demonstrated using modeled turbulence and the GPUaccelerated UCLA 1-D and 2-D FDTD full-wave codes. Initial measurements during the L-H transition show a steep drop in the turbulence intensity over a broad range of k_r and localized in a narrow spatial region around the edge transport barrier location.

Supported by US DoE Contracts DE-FG03-99ER54527 and DE-AC02-09CH11466.

Poster Content

- Abstract
- Microwave diagnostics for turbulence measurements.
- Diagnostics on NSTX.
- Motivation for looking at higher k.
 - New technique: FMCW backscattering for $k_r \sim 0.20$ cm⁻¹.
- Description of FMCW backscattering.
 - Mathematically akin to image warping from image processing.
- Application of FMCW backscattering on NSTX.
 - Turbulence suppression at the ETB location (L-H transition).
- Summary and future work.

Microwave Diagnostics for Turbulence Measurements

- Understanding micro-turbulence is a necessary step to controlling transport in fusion plasmas:
 - Instabilities cover a large range of wavenumbers and frequencies (GAMs, streamers, blobs, ITG, TEM, mictro-tearing, ETG).
 - Some instabilities can feed back to the modify the equilibrium profiles (density, temperature, flows, etc.).
- New microwave diagnostics on NSTX enhance our ability to make detailed turbulence and profile measurements.
 - Ultra-fast swept FMCW reflectometers coupled with new analysis techniques:
 - > Electron density profiles with 7 μ s time resolution
 - Sub-millisecond turbulence radial correlations
 - > High- k_r back-scattering
 - 2-channel poloidal correlation reflectometer:
 - > Turbulence flow
 - > Poloidal correlations
 - 16-channel fixed-frequency reflectometers:
 - > Detailed profile of turbulence fluctuation level
- Full-wave codes (synthetic diagnostics) with GPU acceleration.

Millimeter-Wave Diagnostics for FY2010 Campaign

() NSTX

APS-DPP10 – Reflectometry and Backscattering for Broad-k, Microturbulence Measurements in NSTX (Kubota) November 8-12, 2010

Motivation for Looking at Broad- k_r Fluctuations

• Experimental evidence that broad- k_r turbulence can be measured with good time and spatial resolution.

- FMCW radar image.
 - > 13-53 GHz coverage
 (2.1x10¹² to 3.5x10¹³ cm⁻³).
 - Maximum repetition rate of 7 µs/sweep.

- Other empirical reasons for wanting broad wavenumber spectrum:
 - More sensitive measurement of turbulence a higher k.
 - > Better isolated from changes in the background profile.
 - > Easier to track modulation of turbulence.
 - Correlation lengths.
 - > Turbulent eddies and large coherent structures (streamers).

Review of FMCW (Profile) Reflectometry

Conceptual View of FMCW Backscattering (Single-Frequency Case)

• Assume we know $n_e(R)$ from FMCW reflectometry. Consider wave-packet centered around f.

- Assume backscattered reflection from each point along path.
 - Bragg matching condition for backscattering: $k_r = 2 k_0 \mu(n_e(R), f)$
 - Time-of-flight (TOF) monotonically increasing towards cutoff.
 - Probes wavenumbers between $k=2 k_0=4\pi f/c$ (2x vacuum wavenumber) at edge and k=0 at cutoff.

Conceptual View of FMCW Backscattering (Multiple- or Swept-Frequency Case)

• Consider FMCW source (range of swept frequencies or cutoff densities).

- Provides a signal intensity map from (τ, f) to (k_r, R) .
 - One-to-one mapping.
 - If one knows $n_e(R)$, this mapping must be unique (stated here without proof).
- Method is similar to conventional 180° collective backscattering, but
 - Scattered/reflection location is discriminated by time-of-flight and frequency.
 - Probed wavenumber is discriminated by location and frequency.

MSTX

Inaccessible Regions of (τ, f) and (k_r, R)

- All profiles.
 - Upper limit of $k_r(R)=4\pi f_{\text{max}}/c \mu(n_e(R), f_{\text{max}})$.
 - Upper limit of $\tau(f) = \tau(n_{e, cutoff}(f))$.
- Monotonic density profiles.
 - Lower limit of $k_r(R)=0$.
- Non-monotonic density profiles.
 - No reflection from $n_{e,cutoff}(f)$ hence $k_r(R)=0$ inaccessible.

Image Processing Analog: Image Warp

- Similar procedure in the language of image processing.
 - Image warp.
 - (τ, f) to (k_{p}, R) map or vice versa are the "warp grids" for forward or backward mapping. 14

Signal Processing Technique

- Prescription for creating backscattered signal intensity image in (k_r, R) .
 - Create (τ, f) image to determine TOF curve for profile inversion.
 - Abel invert $\tau(f)$ to create $n_e(R)$.
 - Using $n_e(R)$, calculate (τ, f) points corresponding to a (k_p, R) grid.
 - Since $f(t)=f_0+\alpha t$, localize raw signal in time and frequency $(\Delta t, \Delta f)$. Determine intensity of this signal.
 - Determine corresponding uncertainty $(\Delta k, \Delta R)$.
- Effectively, this is using the backward mapping.
 - Most image processing algorithms do this as well to insure even resolution in the transformed image.
 - At higher IFs (better resolution for the original image), may be able to use the forward mapping on the original image directly.
 - Technical difficulties with reflectometer hardware for doing this:
 - > More difficult to maintain linear frequency sweep.
 - > Nonlinearities cause artifacts.
- For non-monotonic profiles where profile inversion cannot be done, MPTS density profiles can be substituted.

Target: NB-Heated Discharge with L-H Transition

APS-DPP10 – Reflectometry and Backscattering for Broad-k, Microturbulence Measurements in NSTX (Kubota) November 8-12, 2010

NBI-Heated Discharge Profiles

Fast Density Profile Evolution Near the L-H Transition

- Fast evolution of electron density profile near L-H transiton from FMCW reflectometry (Δt =7 μ s).
 - Edge gradient begins to increase.

(D) NSTX

- During t=0.2452-0.2457 s, gradient in the density range $1.0-1.4\times10^{13}$ cm⁻³ dithers.
- Rapid oscillations in the density gradient at ETB location.

Radar Images Near L-H Transition

Index=6417, t=244.919 s L-Mode 12 12 10 TOF [ns] TOF [ns] 0.0 3.5 0.0 0.5 1.5 2.0 2.5 3.0 0.5 Density [x10¹³ cm⁻³] Index=6485, t=245.395 s 14 12 12 10 10 TOF [ns] [us] Ь

Index=6509, t=245.563 s

1.5 2.0 Density [×10™ cm⁻³]

2.5

3.0

Index=6450, t=245.150 s $14^{-12}_{-10}_$

Index=6489, t=245.423 s

Index=6518, t=245.626 s

Index=6470, t=245.290 s

Density [x10's cm-s]

Index=6499, t=245.493 s

Index=6473, t=245.311 s

Index=6502, t=245.514 s

- H-mode edge established at ~245.15 s.
 - Steep edge gradient below $\sim 1 \times 10^{13}$ cm⁻³.
 - Several oscillations between steep and shallower gradient for the density range ~1-1.4x10¹³ cm⁻³ until ~245.626 s.
- During 245.15-245.626 s, both GPI and 30 GHz reflectometer show that edge turbulence is not yet fully suppressed.

0.0

0.5

1.0

0.0

0.5

1.0

ETB Location at R~146 cm

• ETB location identified using gradient oscillations (1.0-1.4x10¹³ cm⁻³).

• ETB radius centered at ~146 cm at the L-H transition.

NSTX

k_r Spectrum vs Radius in L-Mode Phase

• Spectra from well before the L-H transition (~0.245 s).

- k_r spectrum becomes narrower towards core.
- Averaging over 4 sweeps (28 μs).

k_r Spectrum vs Radius Just Before the L-H Transition

• Spectra just before the L-H transition (~0.245 s).

• Recall that ETB occurs at radial location of R~146 cm.

k_r Spectrum vs Radius Just After the L-H Transition

• Spectra just after the L-H transition (~0.245 s).

- Well develops in the k_r vs R spectrogram at ETB location (R~146 cm).
- Large edge intensity (static) due to sharp edge density "ear".

(D) NSTX

k_r Spectrum vs Radius After the L-H Transition

• Spectra after the L-H transition (~0.245 s).

- Well in the k_r vs R spectrogram deepens.
- Accurate reconstruction of interior density profile lost (~1.7 ms after L-H transition) due to growth of edge density "ear".

Conclusions and Future Work

- New method for visualing turbulence in k_r vs R space:
 - Utilizes data from existing FMCW reflectometers on NSTX.
 - > Extends usefulness of reflectometer data to situations where cutoff does not exist.
 - For L-mode low density plasmas, access over a large fraction of minor radius.
 - Evolution of turbulence wavenumber spectra with spatial and time resolution.

• Initial look at L-H transition in NSTX:

- Intensity "well" in k_r vs R space coincident with L-H transition at exactly the ETB location.
- Data analysis technique is still evolving, but results look very compelling.
- Future work will involve obtaining quantitative results.
 - k_r spectral shape:
 - > Radial correlation lengths.
 - > Evolution of turbulent eddies and coherent structures (e.g. streamers).
 - > Need to account for power variation vs frequency of microwave source.
 - Simulations using 1-D and 2-D full-wave codes:
 - > Use either FMCW or pulse source.
 - > GPGPU-assisted computation.

GPGPU-Assisted Full-Wave Codes

Sign Up for Electronic Copy

