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HHFW antenna extends toroidally 90o  
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HHFW heating properties for H-mode plasmas in 
NSTX  

Outline:  
•  Operation at higher power and with ELMs with upgraded, conditioned 

antenna 

•  H-mode with NBI and HHFW 
− RF ‘hot’ zone on the bottom divertor plate 

•  Increased edge deposition with ELMs 
− Effect of ELMs on core heating 
− ELM heat deposition with fast IR camera 

•  H-mode with HHFW alone 
− Effect of ELMs on core heating 
− Sustained stored energies with programming of PRF down to ~ 1.4 MW in 

the ELM-free-like H-mode regime 
− Very narrow ELM heat deposition with fast IR camera 



Plasma conditioning of the upgraded HHFW antenna 
has resulted in operation up to 3.7 MW 

4 

439.64 – 439.31 ms"

•  Lithium sputtering from 
outside of antenna can cause 
arcs if material (dust) enters 
faraday shield enclosure 

•   RF power is not limited by 
RF voltage on antenna but the 
limit appears to be an induced 
RF current effect – i.e, an RF 
current limit 

Plasma Conditioning:   0.5 MW – no arc            3.7 MW – 2 arcs 

0.170 s 0.215 s 

H-mode 
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Operation in H-mode with HHFW+NBI 
- Effect of ELMs on core and edge heating  

Summary of results to be presented: 

− H-mode HHFW power coupling with type I ELMs compared to ELM-free case 
in deuterium   

−  Losses in scrapeoff region to the outer divertor RF heated zone enhanced 
with ELMs 

•  Apparently due to increased edge density effect on edge RF power 
deposition 

− ELM energy deposition peaked around outer divertor strike radius and may 
contribute little to the RF hot zone 
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Fast waves propagating in the SOL are heating the 
tiles of the outer divertor plate 

  “Hot” region is much more pronounced at -90° than at -150° 
-  Edge power loss is greater at -90° 
-  Also, suggests fields move away from wall at -150° along with the onset 

density for perpendicular wave propagation 
  IR camera measurements indicate hundreds of kW are deposited in the 

“hot” region 

ELM-free H-mode, PRF ~ 1.8 MW,  PNB = 2 MW,  IP = 1 MA,  BT = 5.5 kG, D2 



Study of RF heating of the outer divertor plates versus 
magnetic field pitch and antenna phase for ELMy case 
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φA = -90° discharge parameters •  ELMing discharges studied for     
IP = 0.8 MA, PNB = 2 MW versus: 

Bφ     and  φA  Shot # 
5.5 kG  -90°  135325 
4.5 kG  -90°  135333 
4.5 kG  -150°  135337 
5.5 kG  -150°  135339 

•  Powered through ELMs without  
arcs for these cases 

•  Edge power loss is increased with 
higher density and ELMing activity 

(135333) 

(135325) 



RF heated pattern on lower divertor plate follows the 
magnetic pitch 
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439.64 – 439.31 ms"

RF 

Bay I 
IR view 

-90° 

455 ms 

135325 

Bay G 
IR view 

-90° 

452 ms 

135333 

RF (Heat flux 
on divertor 
plate at 
Bay I) 
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Location of heat zone has significant dependence on 
field pitch at lower and upper divertor plates 
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439.64 – 439.31 ms"•   ~ 8 cm shift outward with reduced field pitch 
•   Also, possibly a small shift with phase 

(135325) (135333) 

(135325) (135333) 
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   130608 ELM free – 5.5 kG, 1 MA  " "135337 with ELMs – 4.5 kG, 0.8 MA"

0.353 s" 0.400 s"

φA = - 150°" - 150°"

IR Bay I " " " " "IR Bay I"

Heating on outer divertor plate is more intense with 
ELMs with same field pitch (PRF = 1.9 MW) 
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Higher edge loss with ELMs is consistent with 
higher edge density with ELMs 

•  Thomson scattering indicates that the edge density relative to the onset 
density for perpendicular propagation is greater with ELMs 
−  consequently the FW perpendicular propagation begins closer to the 

antenna with ELMs 

•  ELMs reduce the energy confinement as well 
11 
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•  ΔWe and ΔWtot  for shot 135337 with ELMs are reduced by ~ 50% relative to 
shot 130608 ELM free case  

•  Dα indicates increased power deposition to divertor region with ELMs 

ELMs reduce RF plasma heating by ejecting energy (as 
for NB) as well as by producing higher edge density!

12 
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•  Key question: does ELM contribute significant heat in the primary RF heated 
divertor zone?  
− Probably not 

•  Fast IR camera shows ELM heat deposition peaked at outer strike radius – 
falling to a low value towards the RF heated zone (R ~ 1.1 m) 

•  Experiments have begun to determine the ELM effect on the primary RF edge 
heating zone at Bay H at higher magnetic field pitch (e.g., 4.5 kG, 1 MA) 

ELMs do not appear to enhance HHFW edge loss  to 
divertor directly!

13 

Fast IR at Bay H with antenna phase φA = -90°, BT = 4.5 kG, IP = 0.8 MA"
(135333) (135333) 

(135333) 
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Divertor tile currents are used to track presence of 
RF fields (sheath) and driven currents 

•  Tiles in row 3 and 4 of divertor plate 
are instrumented with Rogowski 
sensors 

•  Bay I and K tiles are in line with 
“hot” zone for RF edge deposition 

Shunt 
Tiles (x 
12) 

Bay K 

Bay I 

Bay J 

Tile I3, I4 Tile K3, K4 
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Divertor tile currents in row 3 show movement of RF hot 
zone across tiles as magnetic field pitch is increased!

•  ΔItile 3k decreases and ΔItile 3i increases as magnetic field pitch increases and 
RF spiral hot zone moves toward the center stack  



16 

Operation in H-mode with HHFW alone 
- Effect of ELMs on core heating and energy 

deposited on the outer divertor plate 

Summary of results to be presented for helium plasmas with an 
antenna phase of φA = -90° throughout: 

− Heating for ELM-free-like and Elmy H-mode conditions for helium plasmas 
•  ELMs cause large increase in energy deposited to the divertor 
•  Programming power to delay ELMs maintains core stored energy  

− Losses in scrapeoff region to the outer divertor RF heated zone may be 
enhanced with ELMs 

•  Due to increased edge density and edge density gradient during ELMs 

− ELM energy deposition is strongly peaked around outer divertor strike radius 
and probably ELM contributes little direct deposition in the RF hot zone 



t = 0.38s, 0.48s 

ELMy H-mode 
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RF-only H-mode Thomson scattering characteristics 

•   Transition to ELMy H-mode is accompanied by: 
−   Steepening of edge density gradient 
−   Dα indication of large ELMs 
−   Drop off of Te(0) 
−   Increase in reflected RF power 

MHD 
(au) 
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ELMs are measured on fast IR at Bay H, Dα at Bay C, 
and LiI at Bay C 

•  The Bay H fast IR heat deposition measurement, Q, clearly shows the ELM 
heat deposition on the lower divertor plate at R = 0.562 m (divertor strike 
radius) 

•  Small effect of ELM is evident on the net RF power 
•  ELMs are located away from the antenna  

135253"
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ELM effect on soft X-ray (bolo) signals peaks inside 
the last closed flux surface 

XHD"
(Be10)"

	
  02  01  00 

 12  13  14 

XUP"
(bolo)"

Shot 135253, 420 ms, Helium 

•  Xup (bolo) peaks strongly on third cord into edge 
of plasma - at top of pedestal or at X-point 

•  ELM-free-like (oscillations followed small ELMs) 
H-mode is evident prior to 0.39 sec 
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ELMs reduce heating efficiency for the RF H-mode 
as for the NB H-mode case 

•  At PRF = 3.7 MW ELM-free-like transition to ELMy H-mode results in greatly reduced 
stored energies Wtot and We 

•  At PRF = 2.7 MW L-mode slowly transitions to ELM-free-like H-mode and stored 
energies increase accordingly  

•  Large ELM at end of the 2.7 MW RF pulse strongly reduces the stored energies 

135253" 135260"
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Stored energy increase period is accompanied by 
edge oscillations and small ELMs 

•  “ELM-free-like” period is 
characterized by edge oscillations 
that peak on top of density 
pedestal and are followed by small 
ELMs 
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Slow fall of PRF results in sustainment of high Te(0) and 
core electron heating even down to PRF < 1.4 MW  

•  Slow transition to H-mode from L-mode as 
power is ramped to 3.7MW 

•  During slow ramp down of PRF, the core 
temperature is maintained and broadened in 
radius even down to 1.36 MW 

•  Large ELM at even lower power strongly 
reduces the stored electron energy and marks 
the transition back to the L-mode 
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Stored energies increase during the fall of PRF in 
ELM-free-like H-mode period 

•  Both Wtot and We begin to increase just prior to the end of the 3.7 MW flat top of the 
RF power waveform 

•  Both stored energies attain values during the RF power ramp down comparable to 
the previous levels shown for 3.7 MW and 2.7 MW flat RF power pulses  

•  Evidently in ELM-free-like H-mode operation little power is needed to sustain the 
stored energies (a strong change in radial transport is indicated) 

135286"
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Fast IR at Bay H clearly shows time response of 
heating on bottom divertor plate 

•  Heating at the strike radius 
increases strongly with transition to 
ELMy H-mode 

•  Transition in RF heating at larger R 
is evident for t > ~ 0.4s  

135253"

135253"135253"
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RF produced ELM deposits most of its energy in the 
vicinity of the outer divertor strike radius 

•  Very little ELM heat is deposited away from the strike point in absence of 
energetic beam ions 

•  ELM deposition has very small effect on RF coupling  

135253" 135253"
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What causes core electron heating to decrease 
strongly during the Elmy H-mode? 

FW "
k⊥= 0"
nonset"

•   Strong expulsion of energy by ELMs is clear from previous data 
•   Edge RF power deposition may increase after transition to H-mode as well 

− Edge density increase due to ELMs? 
− Steepening of density gradient may enhance edge loss to wall/divertor 

tiles and antenna face 
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Summary 

•  ELMs enhance edge RF power losses in scrapeoff region to the outer 
divertor RF heated zone in the NBI + RF case and probably for the RF-only 
case 
  Apparently due to increased edge density and possibly increased edge density 

gradient effects on edge RF power deposition during ELMs 

•  ELM energy deposition is peaked around the outer divertor strike radius and 
may contribute little to the RF hot zone 
  Elms cause a large increase in energy deposited to the divertor peaked around 

the outer divertor strike radius 
  ELM-induced energy deposition is much more peaked near the outer divertor  

strike radius in RF-only case, perhaps due to absence of fast-ions from NBI 

•  Programming RF power reduction to delay ELMs maintained core stored 
energy in RF-only case 
  Elevated total and electron stored energies obtained for ELM-free-like  conditions 

at 3.7 MW and maintained for PRF ramps down to 1.36 MW 
  Transport properties in the ELM-free-like RF H-mode regime appear to support 

significant stored energies with significantly reduced RF core heating power    


