

cadarache

Key Aspects of EBW Heating and Current Drive in Tokamaks

<u>J. Urban¹</u>, J. Decker², J. Preinhaelter¹, G. Taylor³, L. Vahala⁴, G. Vahala⁵

¹ EURATOM/IPP.CR Association, Prague, Czech Rep.
 ² EURATOM-CEA, Cadarache, France
 ³ Princeton Plasma Physics Laboratory

⁴ Old Dominion University, Norfolk, VA
⁵ College of William & Mary, Williamsburg, VA

Introduction & motivation

EBWs – Electron Bernstein waves

- The only waves in the electron cyclotron (EC) range that can propagate in overdense plasmas (ω_{pe}>>Ω_{ce})
- Must be excited by O/X-modes
- Strong interaction with the plasma (electrostatic)
- Potential goals stabilization, profile shaping
 - On/off-axis, localized heating and current drive
- How to optimize and control?

Simulation setup

- AMR (Antenna, Mode-conversion, Ray-tracing) + LUKE (3D Fokker-Planck) codes
 - AMR calculates optimum aiming and EBW ray trajectories
 - LUKE calculates quasi-linear damping and current

O-X-EBW scheme

- Frequency and antenna vertical position can be chosen
- $N_{\rm II}^2$, $N_{\rm pol}$ determined $\rightarrow 2 \pm \phi$ injections possible

Target plasma

- NSTX L-mode
- MAST-U H-mode (TRANSP scenario)
- Z_{eff}=2 for all scenarios
- Antenna parameters
 - 1 MW power (unless specified)
 - Varying antenna vertical position above midplane and toroidal injection angle sign (equivalent to below midplane with switched toroidal angles)

Feasible frequency ranges determined by the equilibria

OXB optimum angle: $N_{\parallel opt}^2 = (1 + \omega / \omega_{ce})^{-1}$, $\mathbf{N} \cdot (\mathbf{B} \times \nabla n_e) = 0$ Theoretical dependence: $C_{OXB} = e^{-\pi k L_n \sqrt{\omega_{ce}/2\omega} \left(2(1 + \omega_{ce}/\omega) (N_{\parallel opt} - N_{\parallel})^2 + N_y^2\right)}$ Additional full wave effects: parasitic SX-FX tunneling, magnetic shear dependence Non-linear effects – parametric decay

Non-parallel O- and X-mode cutoff surfaces Beam curvature should be adjusted to plasma surface Beam size matters as it determines N_{\parallel} spectrum Density fluctuations

Collisional damping at the mode conversion region can cause significant coupling efficiency decrease

OUR SOLUTION

- 1. Determine optimum angle
- Prescribe
 Rayleigh range
 rather than
 beam waist
 radius
- 3. Assume 100% conversion
- 4. Remember that the reality can be different

NSTX L-mode 1st harmonic

NSTX L-mode 2nd harmonic

- Fisch-Boozer CD is favored in the central region
- Ohkawa CD is favored at the edge region
- A region of high-efficiency Ohkawa with high B-field side absorption occurs
- Low-efficiency typically caused by N_{II} sign mixing

MAST-U 1st harmonic

- Generally lower CD efficiency in MAST-U
- Large number of cases are damped on high B-field side because of the magnetic field well at the edge, driving Ohkawa current
- Central region less accessible (same reason)

MAST-U 2nd harmonic

- The space between the 2nd and 3rd harmonic is more narrow → worse central region accessibility
- Ohkawa CD at 3rd harmonic is the dominant scenario

CD efficiency independent of N_{\parallel} in general

No dependence on N_{II} variation either

Quasilinear effects play a role

- Quasilinear absorption typically shifts inwards with higher power because of distribution function flattening
- **CD efficiency can either increase or decrease** with power

N_{II} spread causes low CD efficiency

Low and high CD efficiency cases compared

Summary & conclusions

- EBW heating & current drive investigated with AMR + LUKE codes
 - Large number of different cases examined
- Power can be deposited and current driven at any radius
 - CD efficiency ζ~0.4 can be reached
 - Quasilinear effects must be considered
- Antenna vertical position and/or frequency are the key parameters
 - Various H&CD scenarios possible
 - EBWs can be optimized for a specific goal

Supported by EFDA EURATOM DoE DE-AC02-09CH11466 AS CR project AV0Z-20430508 Czech Science Foundation grant 202/08/0419

... and viewers like you ...