

Supported by

Investigation of NTM via Reflectometry and Polarimetry on NSTX

J. Zhang

•College W&M Colorado Sch Mines Columbia U CompX General Atomics •INL Johns Hopkins U LANL LLNL Lodestar •MIT Nova Photonics New York U Old Dominion U ORNL •PPPL •PSI Princeton U Purdue U SNL •Think Tank, Inc. •UC Davis UC Irvine UCLA **•UCSD** •U Colorado **U Illinois** •U Maryland U Rochester **U** Washington **U Wisconsin**

N. A. Crocker, T. A. Carter, S. Kubota, W. A. Peebles and the NSTX Research Team UCLA 52nd Annual Meeting of the APS Division of Plasma Physics November 8-12, 2010 Chicago, IL

 Culham Sci Ctr U St. Andrews York U Chubu U •Fukui U Hiroshima U •Hyogo U •Kyoto U Kyushu U •Kyushu Tokai U NIFS Niigata U U Tokyo ·JAEA Hebrew U Ioffe Inst RRC Kurchatov Inst TRINITI KBSI KAIST POSTECH ASIPP •ENEA, Frascati CEA. Cadarache IPP, Jülich •IPP, Garching •ASCR, Czech Rep •U Quebec

Summary of results

- NSTX is an ideal platform to study Neoclassical Tearing Mode (NTM) physics.
- Reflectometry on NSTX provides measurements with wide radial coverage and high temporal resolution to study NTMs.
 - Temporal evolution of NTM radial structure
 - Turbulence measurements around magnetic islands
- Planned polarimeter on NSTX will directly measure magnetic fluctuations caused by NTM.
 - Modeling for polarimeter development indicates ~0.4° (4°) phase fluctuation response caused by 0.1% (1%) fluctuation.
 - Laboratory test of polarimeter prototype shows multiple reflections degrade phase resolution.
 - Sub-degree phase resolution is expected by introducing optical isolation

NSTX is an ideal platform to study NTM physics

- NTM is resistive tearing mode sustained by a helically perturbed bootstrap current.
- NTMs are common on NSTX.
 - NTMs can lead to disruption in a high- β plasma.
 - NSTX has high- β ($\beta_T \sim 18\%$) and fully equipped with diagnostics; an ideal platform to study seeding, structure, etc. of NTMs.

Investigation of NTM via reflectometry

Reflectometers measure plasma local density fluctuation

- Microwaves propagate to "cutoff" layer, where density high enough for reflection $(\omega_p = \omega)$
 - Dispersion relation of "Ordinary mode": $\omega^2 = \omega_p^2 + c^2 k^2$, ω_p^2 proportional to density ($\omega_p^2 = e^2 n_0 / \varepsilon_0 m_e$)
 - $k \rightarrow 0$ as $\omega \rightarrow \omega_p$, microwaves reflect where k = 0

- Reflectometer measures path length changes of microwaves reflected from plasma
 - determined from phase (\u03c6) between reflected and launched waves
- Wave propagation controlled by density

 $\phi(f) = 2k_{vac}(f) \int_{R_{co}(f)}^{R_{edge}} \sqrt{1 - \frac{n(R)}{n_{co}(f)}} dR - \frac{\pi}{2} \quad (1-D \text{ model based on WKB assumption})$

Reflectometer array on NSTX spans broad radial range of plasma

- n_e and O-mode cutoff locations 75 GHz shot 141400, t = 582 ms 72.5 GHz 16-channel fixed-frequency 70 GHz 6 67.5 GHz reflectometer array spans large (10^{19} m^{-3}) 62.5 GHz radial range of NSTX plasma. GHz -f = 30 - 75 GHz $-n_0 = 1 - 7 X 10^{19} m^{-3}$ (O-mode) $\stackrel{\circ}{=}$ Typical H-mode Temporal evolution of radial mode n 1.2 1.0 14 1.6 structure can be measured. R (m)
 - Possible to measure turbulence around magnetic islands (10 MHz sampling rate)
 - this turbulence affects NTM stability

NTM perturbs density profile

- NTM flattens the density in the islands
 - Displacement inverts around island
 - Sometime NTM is coupled to m/n = 1/1 kink (positive displacement)
 - Kink modifies density displacement
 - Total displacement may not invert if kink is large compared to NTM
- Phase inversion expected between reflectometer channels for islands
 - Possibly no inversion if island coupled to kink

Modeling reflectometry response to NTM shows "mirror model" can approximately give mode structure

- "Mirror model" assumes phase fluctuation entirely due to displacement of cutoff. $\xi_{\psi,mirror} = \delta \phi / (2k_{vac})$
- Simple model of NTM in plasma (above left) & 1-D WKB approx. $\Rightarrow \delta \phi$
- $\xi_{\psi,mirror}$ roughly approximates ξ_{ψ} (above right)

NTM mode structure measurement by reflectometry

• 2/1 NTM at R ~1.25 m

- Flat region in density profile at R~1.25 m
- Equilibrium reconstruction (EFIT02) indicates q=2 at R=1.22 m
- Displacement appears to approach inversion near R ~1.25 m
 - Consistent with identification as NTM

(D) NSTX UCLA

52nd APS-DPP – Study NTM via reflectometry and polarimetry (J. Zhang)

Modeling magnetic islands for polarimeter development

Polarimetry can contribute to NTM studies on NSTX

 E_v

- Polarimetry measures change of wave polarization caused by magnetized plasma.
- Polarimetry on NSTX can contribute to
 - Equilibrium reconstruction—useful to predict NTM structure
 - Direct measurement of NTM magnetic fluctuations
- Planned polarimeter on NSTX
 - Horizontal retroreflection from Center Stack
 - Vertical scan around midplane
 - *f* = 288 GHz (*λ*~ 1 mm)

Polarimeter is sensitive to magnetic islands

- Toroidal *E* component, $|E_{TOR}|$, is detected by mixer.
- Phase of $|E_{TOR}|$ modulation is modified by magnetic islands.
 - Amount of change determined by size and position of islands

Realistic magnetic islands structure used in polarimetry modeling

52nd APS-DPP – Study NTM via reflectometry and polarimetry (J. Zhang)

Polarimetry modeling shows ~0.4° phase response caused by 0.1% magnetic fluctuation

Model assumes helically perturbed B-field around q=m/n rational surface

$$\tilde{B}_{\psi} = \tilde{B}_{\psi 0} e^{-\frac{(\hat{\psi} - \psi_{m,n})^2}{(w/a)^2}} \cos(m\Theta - n\phi)$$

- m/n=2/1 island is modeled: ($w\sim 0.1 m$, $\hat{\psi}_{2,1} \sim 0.15$)
 - beam propagates along chord 0.1 m below midplane
- Phase change of $|E_{TOR}|$ modulation is $\sim 0.4^{\circ}$ with $0.1\% \tilde{B}_{\psi 0} / B_0$
- Phase change dominated by Faraday rotation
 - Amount of phase change approximately proportional to fluctuation amplitude

Laboratory test of polarimeter prototype

Polarimeter prototype phase resolution tested in laboratory

- Prototype configured as heterodyne interferometer
 - Relative phase controlled by translatable mirror
 - Mirror controlled by micrometer (sub-degree phase change)
- Microwave source sweeping frequency up to 1 MHz

Multiple reflections degrade phase resolution

- Microwaves returning from plasma mostly (80%) channeled to source and partially reflected back to plasma (i.e. 2nd pass)
 - 2nd pass beam strongest among multiple reflections
- Interferometry effect is caused by 2nd pass beam
 - Phase of beating signal with main beam very sensitive to path length change ($\lambda \sim 1 \text{ mm}$)
 - Path length changes due to mechanical vibration and plasma turbulence

Optical isolation expected to improve phase resolution

- Multiple reflections can be eliminated by introducing optical isolation.
 - Optical isolator consists of 45° Faraday rotator and polarizer
- Phase sensitivity is expected to be significantly improved.
 - Sub-degree phase resolution is desired

Summary of results

- NSTX is an ideal platform to study NTM physics.
- Reflectometry on NSTX provides measurements with wide radial coverage and high temporal resolution to study NTMs.
 - Temporal evolution of NTM radial structure
 - Turbulence measurements around magnetic islands
- Planned polarimeter on NSTX will directly measure magnetic fluctuations caused by NTM.
 - Modeling for polarimeter development indicates ~0.4° (4°) phase fluctuation response caused by 0.1% (1%) fluctuation.
 - Laboratory test of polarimeter prototype shows multiple reflections degrade phase resolution.
 - Sub-degree phase resolution is expected by introducing optical isolation

Future work

- Reflectometry:
 - Improve interpretation of reflectometry measurements
 - Combine with full wave propagation modeling
 - Compare reflectometry measurements with theoretical model of NTMs (e.g. 1/1 kink couples with 2/1 magnetic islands)
 - Integrate reflectometry measurements with other diagnostics (e.g. magnetics, Ultra-Soft X-Ray, etc.) to further study NTMs on NSTX
- Polarimetry:
 - Measurements can contribute to other MHD modes, e.g. Alfvén eigenmodes

20

Requests for electronic copy