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Overview

• Fundamentals of MSE and Motivation for MSE-LIF: 
Magnetic Field Magnitude and Pitch Angle Measurements

• Foundation for MSE-LIF: Low-Field, Neutral Gas 
Measurements

• MSE-LIF at Intermediate Field in Plasma: Challenges and 
Responses

• Laser Development: 651 nm, 10 W, 6 GHz 

• Installation on National Spherical Torus Experiment (NSTX)

• MSE on ITER



Motional Stark Effect Diagnostic: 
Fundamentals and Addition of Laser-

Induced Fluorescence



Motional Stark Effect Diagnostic
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• Emission from hydrogenic neutral 
beam split and polarized due to 
Stark effect from          electric field

• Balmer alpha (n=3 to n=2) 
transition observed. m=0 are , 
m=±1 are 

• Pitch angle determined by 
polarimetry on single line of 
spectrum

• Radial profile of pitch angle used 
with external magnetics to 
reconstruct equilibrium

• Sensitive to radial electric fields

!v × !B



Advantages of MSE-LIF system:

Field Range: 

Measurement of |B| as well as pitch angle:

Sensitivity to Er:

Ease of Calibration:

MSE-LIF uses laser to excite H-alpha transition in diagnostic neutral beam

MSE measurements from ~0.001 T and up. Traditional MSE limited by 
overlap of spectral lines as field decreases

Measure |B|,  use to compute pressure, current profiles

Can use MSE-LIF in conjunction with additional MSE system to 
determine Er

Insensitive to polarization effects in optics



 LIF Scheme

• Excite n=2 to n=3 
transition in Hydrogen: 
Doppler shifted to 651 
nm

• Observe same 
transition: Emission 
Doppler shifted to near 
660 nm

• Laser wavelength match 
to beam voltage

• Laser polarization match 
to Stark transition
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Pitch Angle Measurement

• Laser collinear with neutral beam for Doppler match everywhere.

• Polarization information set by input laser: no need for polarimetry in 
detection system

• Optional radial beam injection eliminates pitch angle sensitivity to Er 

Diagnostic 
Neutral Beam 

Collection Optics
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Unprecedented Spectral Resolution

Example: NSTX at ~0.4 T

Direct observation of 
heating beam:
Width ~0.3 nm 

(geometric broadening)
Limit of heating beam resolution:

Width ~0.04 nm (beam 
divergence)

HTPD_illustrations.nb 1

Printed by Mathematica for Students

MSE-LIF system 
with diagnostic neutral beam

Width ~0.01 nm (beam 
energy spread)

Separation between Stark 
components 

~0.03 nm (90 kV D beam, 0.4 T)

• Measurement at lower fields than traditional MSE. 
• Precise measurement of |B| with laser or beam voltage sweep: Use to 

reconstruct pressure and current profiles. 

NOVA

~



MSE-LIF Measurements in Low 
Field, Neutral Gas Background



Diagnostic Neutral Beam

• RF source built in collaboration with LBNL

• Low noise HV power supply and sweep capability built in collaboration 
with PPPL

• Routine operation in development lab: 30–40kV, 40 mA (1.5 kW) 0.26◦ 

divergence,  ~70% full-energy fraction, ~65% neutral fraction, ~1 cm 
diameter, CW operation



Initial Testing: Beam Into Gas at Low B

• Tunable ring dye laser (Coherent 899-21) near 650 nm,  <1 MHz 

Linewidth, 300 mW, pumped by 514 nm argon ion laser

• Molecular hydrogen gas in present target chamber

• Magnetic field coils for up to 100 Gauss 
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H-alpha Fine Structure

• Fine structure spectrum 
spans 0.02 nm at zero field

• Comparable to ~0.03 nm 
separation between Stark 
lines in NSTX at 0.4 T

• l is orbital angular 
momentum quantum 
number, j is total angular 
momentum quantum 
number l ±1

• Seven allowed transitions: 
Shown in diagram 
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LIF Enhancement at Low Field

B=0 G B=45 G

B=20 GB=20 G
 E. L. Foley and F. M. Levinton.  J. Appl. Phys. 98(9):093101, (2005)

• Laser fixed, beam voltage swept across wavelength range of fine structure spectrum (Doppler shift 
varies with voltage - lower energy to right on plot) 

• Peak signal increase nearly 10X (note change in scale)

• Motional Stark field causes levels to mix, allowed transitions change
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Quantum Mechanics Calculation

HZn = (glLz + gsSz)µBBz

HL = eBvr(!xsinφ − !ycosφ)

!EL = !v × !B

HEr = e !Er(!xcosη + !ysinη)
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Fine Structure: Spin-Orbit Coupling, Relativistic Effects, Lamb Shift.            
from experiments.E0...En

Linear Zeeman Effect:

Motional Stark Effect:

Stark Effect of Radial Electric Field: 

Fully General Calculation



State Mixing: Results from QM model
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n=2 Lifetimes vs B n=3 Lifetimes vs B 

• 2s is metastable in absence of field, lifetime changes rapidly over field range

• In zero-field case, long 2s lifetime gives large population

• As field increases, new transitions allowed - signal increases

• Higher field removes excess 2s population, signal in gas reduced



Collisional Radiative Model
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Unique aspects of CRISP CRM

Includes all fine-structure sublevels: 18 states in n=3, 8 in n=2, 2 in n=1

Complete QM calculation of radiative transition parameters and their dependence on 

background E and B fields

Transition Probability: Ann
′(B) =

4e2ω3

3!c3
| "rnn

′(B) |2

Lifetime:

Laser Pumping Term:

Oscillator Strength:

τi(B) =
1

∑

k

Aik(B)

W (B) =
2π2rocflu(B)I(ωul)

!ωul

fynn
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2mωnn
′

!
| ynn

′ |2

 E. L. Foley and F. M. Levinton. J. Phys. B 39 (2006) 443-453



Model Agreement with Data

• CRISP model shows good agreement with Collisionally-Induced Fluorescence (CIF) and LIF 
behavior

• CIF signal decreases as 3s loses population due to lifetime decrease

• LIF first rises with applied field, as new transitions are allowed, then drops as 2s population lost 
to ground.
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MSE-LIF at Intermediate Field in 
Plasma: Challenges and 

Responses



MSE-LIF at Intermediate Field

• Increase n=2 population available for excitation

• Ensure full beam neutralization

• Reduce re-ionization in beamline

• Provide greater collisional excitation from n=1

• Improve linewidth match of beam and laser

• Reduce beam linewidth

• Increase laser linewidth

Challenge: Signal Level



• Spiral antenna helicon 
operational: Up to 1013 cm-3 ion 
density, 500 G field, 2 kW RF 
power

• Argon plasma: Requires 
collisional-radiative model 
modification

Plasma Testbed



Collisional Excitation in Plasma

Model with 
hydrogen 
plasma 

background - 
rates from 
Hutchinson 

’02.



CRM in Plasma

Neutral Gas
Helicon 
Plasma*

NSTX 
Plasma

n2/n1
2s~10-3  

2p~5x10-5 8x10-4 3x10-3

n3/n1 5x10-5 3.5x10-4 1x10-3



HTPD_illustrations.nb 1

Printed by Mathematica for Students

Parameter Linewidth

Natural linewidth ~100 MHz

Laser linewidth ~100 MHz

RF on accel. grid ~2 V = ~120 MHz

RF AM line noise ~2 V = ~120 MHz

Line ripple on HV ~1 V = ~60 MHz

Energy straggling ~50 V = ~3 GHz

Neutral 
Beam
Energy
Spread

Laser 
Linewidth

Need to maximize overlap of laser 
and neutral beam energy distribution

wavelength 

Low p broadening ~50 V = ~3 GHz

Linewidth Match of Beam and Laser



Neutral Beam Energy Spread

Recent measurements of 
neutral beam emission with 
Fabry-Perot show fine 
structure of collisionally-
induced fluorescence
FWHM ~6 GHz
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Laser Development: 
651 nm, 10 W, 6 GHz 



New Laser Development

Required Laser Characteristics:

• Tunable near 651 nm

• Linewidth to match neutral beam energy spread (~6 GHz)

• Power per unit linewidth comparable to dye laser experiments: 
1.5 W/GHz

• Good beam quality to match 1 cm neutral beam diameter and 
0.26˚ beam divergence

• Reliable operation



Diode Laser Array with VHG Feedback
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Side View:
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651 nm Diode Array

• Custom wafer growth by Modulight Inc

• 10 W, 652 nm @ 20˚C - operate at 15˚C for 651 nm

• 19 emitter array, 150 micron emitter width

Modulight, Inc. 
CONFIDENTIAL 

 

 
 

Modulight, Inc. 
Tel. +358 20 743 9000,  Fax +358 20 743 9009 
P.O.Box 770, FIN-33101 Tampere, FINLAND 

www.modulight.com 
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Figure 2. Mounted 650 nm laser bar. 

2.2 Characterization results 

The mounted bars have been characterized at 20°C. The power has been measured 
using an integrated sphere and spectral measurements have been performed with an 
optical spectrum analyzer.  
 
Figure 3 shows the light power and forward voltage as functions of the DC drive 
current. The bars reach 10 W output power at 20°C and therefore fulfill the power 
specification. 
 
The spectral properties are shown in Figure 4 and Figure 5. In Figure 4 the 
dependence of the central wavelength on the operating power and operating current 
is shown. Figure 5 shows the example spectral plots at full power (Pop = 10 W) at 
20°C. The central wavelength meets the wavelength specification of 653 ± 2 nm 
being about 652 nm. 

Modulight, Inc. 
CONFIDENTIAL 

 

 
 

Modulight, Inc. 
Tel. +358 20 743 9000,  Fax +358 20 743 9009 
P.O.Box 770, FIN-33101 Tampere, FINLAND 

www.modulight.com 
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650 nm Laser Bar 
Light Power and Forward Voltage
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Figure 3. Light power and forward voltage for 650 nm laser bar at 20°C. 
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Figure 4. Dependence of the central wavelength on the operating power and 
operating current. 

 

Photo and data courtesy of Modulight inc



Volume Holographic Grating

• VHG created with 3D image of interference pattern between coherent 
optical fields in photorefractive glass

• Allows selection of narrow wavelength range -  depends on length

• Angular acceptance also narrow
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Precision Collimation Optics

• Theoretical limit throughput gives only 20% of laser light accepted to grating

• Can’t afford to lose light to smile, pointing errors, other misalignment

• Procure custom phaseplate tailored to individual diode array in desired operating 
conditions

• Technology developed at Heriot-Watt University, available from Power Photonic

Images courtesy of Power Photonic



Installation on National Spherical 
Torus Experiment (NSTX)



Performance on NSTX

• MSE-CIF data from NSTX, MSE-LIF laboratory performance and 
collisional-radiative model used together to predict signal levels for 
NSTX - expect 10x higher photon count rates (at detectors) than CIF 
system. Time resolution of better than 10 ms expected.

• Magnitude of B resolved to few Gauss range, Pitch angle at least 
comparable to CIF system ~0.3 degrees.

• Spatial resolution few cm range - limited by view angle with respect to 
beam. Fundamental limit due to emission decay time close to 1 cm.
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NSTX Installation

• MSE-LIF slated for 
installation in 2011

• PPPL: vacuum 
vessel, platform 
and neighboring 
diagnostic 
modifications

• Nova Photonics: 
diagnostic neutral 
beam stand, 
experimental 
control



View Layout on NSTX

• 19 radial points

• Aim to match existing 
MSE-CIF system radial 
locations

• Near-radial injection 
angle minimizes 
sensitivity to radial 
electric field on pitch 
angle measurement



Stray Magnetic Fields Near DNB 

Simulation Reveals ~300 G Vertical Field to ~500 Gauss 
Vertical Field in Shield Vicinity



Magnetic Shield Design

• 2-layer shield needed: Outer layer of high-saturation material, Inner 
layer of high permeability material

• Design goal to keep field in source and accel region under 0.5 
Gauss

• Design must accommodate high voltage and ground potential 
nearby

• Design must be compatible with vacuum system layout

• Extensive design optimization performed in 2D and 3D



Magnetic Shield Design

RF Source
Region 

(Source not
shown)

Acceleration Region Neutral Cell

1010/1026 Steel Outer 
Shield Mu Metal Inner Shield

8.000 17.000 6.884

1
.7

2
5

1
0
.2

5
0

2.250

0.250

2.875

0
.9

3
8

Part Name: Mu Metal Inner Shield (3 Pieces)

Material: Mu Metal

All Dimensions in Inches

Material Thickness 0.0625" Except Where Noted

5 4 3 2 1

0
.7

5
0

0
.5

0
0

8.000

3.750

8.929 9.071

19.750

1
4

.5
0

0

2.750

4.250

8
.7

5
0

Material: Soft Iron 

Part Name: Soft Iron Outer Shield (3 Pieces)

All Dimensions in Inches

5 4 3 2 1

Inner shield

Outer shield



Magnetic Shield Simulations

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

1.00E+000

1.00E-0081.00E-008

1.00E-007

1.00E-006

1.00E-005

1.00E-004

1.00E-003

1.00E-002

1.00E-001

1.00E+000

Distance [meter]

M
a

g
_

B

Ansoft Corporation
AxialFieldPlot

MaxwellDesign1

11 May 2009 16:21:44
Y1

Mag_B
Setup1 : LastAdapt

(T
es
la
)

0.00 0.20 0.40 0.60 0.80 1.00

1.00E-001

1.00E-0071.00E-007

1.00E-006

1.00E-005

1.00E-004

1.00E-003

1.00E-002

1.00E-001

Distance [meter]

M
a
g

_
B

Ansoft Corporation
VerticalFieldPlot
MaxwellDesign1

11 May 2009 16:22:11
Y1

Mag_B
Setup1 : LastAdapt

May11_dipoleOffAxial - MaxwellDesign1 - 3D Modeler Monday, May 11, 2009

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

1.00E+000

1.00E-0021.00E-002

1.00E-001

1.00E+000

Distance [meter]

M
a
g

_
B

Ansoft Corporation
AxialFieldPlot

MaxwellDesign1

11 May 2009 17:23:37
Y1

Mag_B
Setup1 : LastAdapt

Approx. Axial 
Extent of Outer 

Shield

Field Plot Along
Vertical Line

Axial line - no 
shield

0.5 G Design 
Goal

(T
es
la
)

0.5 G Design 
Goal

(T
es
la
)

Field Plot 
Along Axial 

Line



MSE on ITER



MSE on ITER

• ITER environment poses challenges for all optical 
diagnostics, including MSE

• Mirror labyrinth required for neutron shielding (refractive 
optics not an option)

• Plasma-facing mirror will suffer deposition and erosion 
which will have significant impact on polarized light 
propagation

• One option: Use spectrum for magnetic field magnitude 
measurement, like MSE-LIF makes possible on NSTX



NSTX as Testbed for ITER MSE

ITER high field and high beam energy 
conditions make spectrum relative 
width-to-spacing ratio similar to that 
on NSTX. 

MSE-LIF Prediction on NSTX
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MSE-LIF on ITER

• Potential advantage of ease of calibration

• Detailed collisional-radiative modeling must be done to 
determine feasibility

• Access for laser in heating beam sources must be 
incorporated into design

• Laser power required expected to be ~100x what is 
presently available - possible with arrays, further 
development



Summary

• Motional Stark effect with laser-induced fluorescence (MSE-LIF) 
system under development 

• Experiments and modeling done to establish foundation of 
understanding for measurement

• Laser development near completion

• Diagnostic neutral beam upgrades underway

• NSTX Installation slated for 2011
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Polarization Effects

L
IF

 S
ig

n
a
l 
In

te
n
si

ty
 (

A
rb

.)

-0.1 -0.05 0.0 0.05 0.1
Wavelength (Angstroms)

Vert. Pol.

Horiz. Pol.
a)

LIF at 45 G


