

Supported by

High-Harmonic Fast Wave (HHFW) Heating Results on NSTX*

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INI Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL **PSI Princeton U** Purdue U SNL Think Tank. Inc. **UC Davis UC Irvine** UCLA UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Gary Taylor¹

In collaboration with

R. E. Bell¹, P. T. Bonoli², D. L. Green³,
R. W. Harvey⁴, J. C. Hosea¹, E. F. Jaeger³,
B. P. LeBlanc¹, C. K. Phillips¹,
P. M. Ryan³, E. J. Valeo¹, J. R. Wilson¹, and the NSTX Team

> ¹Princeton Plasma Physics Laboratory ²MIT Plasma Science and Fusion Center ³Oak Ridge National Laboratory ⁴CompX

*Work supported by US DoE contracts DE-AC02-09CH11466 and DE-AC05-00OR2272

NO4.00013 52nd Annual Meeting of the Division of Plasma Physics Chicago, Illinois, November 8-12, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Office of

Science

Introduction

- Seek to maximize HHFW heating inside last closed flux surface (LCFS) to support fully non-inductive I_p ramp-up & sustainment
- 12-strap antenna has well-defined spectrum, providing good control of deposition & RF current drive direction
- Double-feed antenna upgrade installed in 2009:
 - > Stand off voltage did not improve as much as predicted
 - Voltage appears limited by RF currents induced in antenna surface
 - Voltage limit increases with sufficient antenna conditioning
- Last year reported improved RF coupling to NBI H-modes & low I_p discharges by using lithium conditioning:
 - > This year extensive lithium conditioning seriously compromised RF performance

Extensive lithium conditioning this year significantly degraded antenna performance compared to 2009

- In 2009 quickly reached arc-free $\rm P_{RF}$ = 2-3 MW & arc-free $\rm P_{RF}$ ~ 4 MW by end of campaign
- Following extensive lithium conditioning this year only reached
 P_{RF} ~ 1.5 MW arc-free operation & observed copious lithium ejection associated with arcing
 - Before lithium conditioning quickly reached a stand-off voltage of 25 kV during RF vacuum conditioning
 - Later in campaign difficult to reach even ~ 15 kV

Lithium ejection (green light) from top of antenna at time of RF arc

P. M. Ryan, et al., Poster BP9.00073, Mon AM

Significant RF power flow to lower divertor: RF heating pattern on the divertor plate follows the magnetic pitch

AORSA full-wave model with boundary at limiter predicts large E_{RF} fields following magnetic field near top & bottom of plasma

- In addition to RF power coupling to core, some power propagates just inside LCFS as an edge localized eigenmode
- E_{RF} in edge eigenmode is significantly larger for negative antenna phasing
- Similar to plasma TV images
- For k_φ = -3 m⁻¹, fast-wave propagates outside LCFS to wall

TRANSP-TORIC analysis of matched NBI+HHFW & NBI-only ELMfree H-modes predicts ~ 50% of P_{RF} is absorbed inside LCFS

- Fraction of P_{RF} absorbed within LCFS (f_A) obtained from TRANSP-calculated electron stored energy:
 - W_{eX} from HHFW+NBI H-mode
 - W_{eR} from matched NBI-only H-mode
 - $W_{eP}-$ using χ_{e} from NBI-only H-mode to predict T_{e} in HHFW+NBI H-mode
- $f_A = (W_{eX} W_{eR}) / (W_{eP} W_{eR}) = 0.53 \pm 0.07$
- TORIC used to calculate the power absorbed by electrons (P_{eP}) assuming 100% RF plasma absorption
- Electron absorption, P_{eA}= f_A × P_{eP}
 For P_{RF} = 1.9 MW:
 0.7 MW → electrons
 0.3 MW → ions

CQL3D Fokker-Planck code predicts significant fast-ion losses in HHFW-heated ELM-free NBI H-modes

 Without fast-ion loss CQL3D predicts much higher neutron production rate (S_n) than is measured

• First-order finite-orbit width loss model being implemented in CQL3D

B. P. LeBlanc, et al., Poster BP9.00076, Mon AM

"High-resolution" full-wave simulations predict existence of a new short-wavelength mode that damps on electrons

- This "Slow Wave" mode is seen mainly in E_{//}, not E₊ or E₋
- Mode is localized mainly off mid-plane
- The mode is seen in both AORSA & TORIC full-wave simulations

C. K. Phillips, et al., Poster BP9.00075, Mon AM

Summary

- Extensive lithium conditioning significantly degraded RF performance this year; maximum arc-free $P_{RF} \sim 1.5$ MW, compared to ~ 4 MW in 2009
- RF heating pattern on divertor during H-mode follows magnetic field
- About 50% of P_{RF} absorbed inside LCFS in ELM-free RF+NBI H-mode
- "High-resolution" full-wave simulations predict the existence of a new shortwavelength mode that damps on electrons
- 3-D full-wave simulations with the boundary at the limiter predict E_{RF} follows the magnetic field near top and bottom of plasma

Backup Slides

NSTX HHFW Antenna Has Well Defined Spectrum, Ideal for Studying Phase Dependence of Heating

HHFW antenna extends toroidally 90°

 Phase between adjacent straps easily adjusted between Δφ = 0° to Δφ = 180°

Some progress in heating low I_p (~300 kA) RF-only H-mode plasma, but only achieved $f_{NI} \sim 0.6$ due to low P_{RF} (~1.5 MW)

- Spherical torus needs fully non-inductive I_p ramp-up & sustainment
- Low $I_{\rm p}$ HHFW experiments in 2005 could not maintain ${\rm P}_{\rm RF}$ during H-mode
- This year generated sustained RF H-mode with internal transport barrier (ITB)
 - Better plasma-antenna gap control than in 2005 (Reduced PCS latency)
 - > V_{loop} ~ 0 and dI_{OH}/dt ~ 0, but need P_{rf} ≥ 3 MW for fully non-inductive H-mode

Large ELMs create higher RF power flow to lower divertor & reduce RF heating efficiency in RF+NBI & RF-only H-modes

