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Li conditioned ELM free discharges result in 
core impurity accumulation in NSTX plasmas 

• Lithium wall conditioning between discharges in NSTX:
– Lithium evaporators (LITER) deposit up to              

40mg/min on the lower divertor
– Lithium layers in the outer strike point (OSP) region 

degrade during discharges
– Carbon sputtering possible despite Li conditioning

• Lithium conditioned discharges show impurity accumulation:
– ELM suppression due to edge stabilization of 

ballooning/peeling modes
– Zeff up to 4 due to core carbon accumulation
– Lithium screened from core (less than 1% of carbon 

concentration)
– Core radiated power due to metals (up to 2MW)

• Research effort to:
– Understand NSTX impurity sources distribution
– Reduce core impurity accumulation 

W. R. Wampler
(SNL)
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Divertor D2 injection to reduce edge impurity sources 
in Li-conditioned H-mode discharges

• Dedicated experiment with D2 divertor gas puff: 
– 10-25 Torr-l injected in the high flux expansion outer SOL 
– small amounts not to affect pedestal stability and core confinement
– below threshold for OSP partially detached divertor

Divertor gas puff
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H-mode confinement and performance retained at 
moderate D2 flow rates while Zeff is reduced 

ELM free H-mode discharges
Ip = 800 kA
PNBI = 4 MW
High elongation/triangularity: δ=2.3 - κ=0.8 
drsep= -5 mm
175 mg Li between discharges 

• D2 divertor puff  at 300-500 ms 
• Core plasma parameters unaffected
• No change in confinement properties
• Zeff reduced up to 30%
• Neutrons increased up to 30%
• Smaller core Prad reduction (up to 20%)
• Higher gas injection rates lead to stronger  

impurity reduction until OSP partial 
detachment is achieved

Reference discharge     Discharge with gas puff
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Carbon concentration reduced up to 30% in both core 
and edge plasma

• Core carbon densities from CHERS (C VI, n=8-7, 529.1 nm)
• Carbon concentration reduced up to 30%, both in core and edge
• Carbon concentration radial profile shape unchanged
• Total carbon inventories reduced up to 30% (~1.5e19 ions) 

Reference discharge     Discharge with gas puffReference discharge     Discharge with gas puff

Gas puff
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Possible explanations include changes in impurity 
sources, SOL and core transport

• Sources
– Divertor target, main chamber wall
– Divertor physical and chemical 

sputtering

• Parallel SOL transport
– Parallel forces acting on impurity ion 

[Stangeby, 2000]
– Force balance affects divertor 

entrainment of impurities

• Radial core transport (neoclassical)
– Diffusive and convective transport 

M. Balden, J. Roth, J. Nucl. Mater. 280, 39-44 (2000)
C. Hopfand W. Jacob, J. Nucl. Mater. , 342, 141–147 (2005)

B.V. Mech et al. J. Nucl. Mater. 255, 153–164 (1998).
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1-D radial transport modeling shows that reduced impurity source 
is needed to explain core carbon concentrations

• MIST code simulations for reference discharge without gas puff:
– neoclassical level diffusion (D = 1 m2/s)
– strong inward pinch velocity
– Te and ne profiles from experiment

• Core carbon concentration of gas puff discharge reproduced reducing LCFS 
impurity source by ~20-25% 

MIST modeling

Experiment (CHERS)

Reference discharge Discharge with gas puff

MIST modeling

Experiment (CHERS)
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Reduced divertor Te with divertor gas puff suggests 
reduced physical sputtering yield

• C II emission:
– Spatial extent increases
– Radiation front moves upstream

• Te and ne profiles with gas puff simulated with a 
5 point SOL transport model via local flux 
amplification in the ionization region [R. Goswami, 
Phys. Plasmas, 8,3 (2001)]

• Gas puff is effective in increasing ne and  
decreasing Te

• Consistent with observed CII broadening 

• Suggests reduction in physical sputtering yield in 
the OSP region 

• Lack of direct ne and Te measurements 
precludes use of S/XB method on gas puffing 
discharges to infer carbon influxes

Lower Divertor  CII  Brightness (658.5nm)
Reference

Gas Puff

OSP

ISP
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Reduction in divertor surface temperature does not 
imply reduction in chemical sputtering yield

• In discharges with gas puff reduction in surface 
temperature up to 150°C are observed w/o OSP 
detachment
• T decrease not enough to support conclusions about 
chemical sputtering yield

• With gas puff inner strike point detaches
– Reduced physical sputtering 

• Role of MARFE in impurity source? 
– Strong MARFE activity after divertor gas puff 
– Increase in ne above MARFE threshold

Lower Divertor  D-alpha (A.U.)
Reference

Gas Puff

Gas Puff

Reference

OSP

ISP

OSP

OSP

ISP
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Summary

• Lithium conditioned H-mode ELM free discharges in NSTX result in core 
impurity accumulation (carbon and metals)

• Divertor D2 puffing resulted in: 
– Zeff reduced by as much as 30%
– Core carbon concentrations and inventories reduced up to 30%
– Core radiated power reduced up to 20%

• MIST impurity transport modeling suggest reduction of LCFS impurity 
source

• Changes in divertor conditions suggest reduction in physical sputtering 
yield at OSP and ISP

• Divertor surface temperature reduction not enough to support reduction in 
chemical sputtering yield

• Further data and analysis needed to confirm the role of SOL transport and 
increased impurity entrainment in divertor
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NSTX Reference Data
NSTX eng. and plasma parameters

R = 0.85 m, a = 0.67 m, A > 1.27 
PNBI < 7 MW, Bt < 0.6 T

NSTX fueling * 1 Torr l/s = 7e19 s-1

• Gas injection:  low field side (LFS, top + side) 
high field side (HFS, midplane + shoulder)
D2, He, injected at  S = 20 - 80 Torr l /s.

• Neutral beam injection system: 
three beams,  80 - 100 keV, 0.8-7 MW,
fueling rate: S < 4 Torr l / s

• Supersonic gas injection: S = 30 - 65 Torr l / s

NSTX wall conditioning
• Li coatings deposited by Li evaporator

NSTX pumping
• Turbomolecular pump (3400 l / s)
• NBI cryopump ( 50000 l / s, in NBI plasmas only)
• Conditioned walls, Li coatings

Plasma Facing Components
• ATJ graphite tiles on divertor and passive  plates
• ATJ and CFC tiles on center stack
• Thickness 1” and 2”
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Five point model of the SOL plasma 

• Region 1: volumetric SOL heat Q┴ and particle sources S┴, 
from midplane (x=0) to X-point (x=xx).

• Region 2: Conduction region, until start of energy loss zone 
(x=xL,T(xL)=10eV).

• Region 3: Radiation front region (max. C radiation eff.) until 
start of the neutral zone (x=xC,T(xC)=4eV).

• Region 4: Ionization front region (most neutrals are ionized) 
until onset of recombination region (x=xR,T(xR)=1.6eV).

• Region 5: Recombination front region (recombination 
exceeds ionization), until divertor plate.

R. Goswami, Phys. Plasmas, 8,3 (2001)



NSTX 52nd APS DPP – Core impurity reduction with divertor gas puff,  Filippo Scotti (11/10/2010) 13

Graphite Physical Sputtering Yield

Data: M. Balden, J. Roth, J. Nucl. Mater. 280, 39-44 (2000)
Model: C. Hopfand W. Jacob, J. Nucl. Mater. , 342, 141–147 
(2005).



NSTX 52nd APS DPP – Core impurity reduction with divertor gas puff,  Filippo Scotti (11/10/2010) 14

Graphite Chemical Sputtering Yields

B.V. Mech et al. J. Nucl. Mater. 255, 153–164 (1998).
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PEC and SXB coefficients for CII 

Open ADAS
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PDD Discharge
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Possible explanations from changes in impurity sources, 
SOL and core transport

• Sources
– Divertor target, main wall
– Physical and chemical sputtering

• Parallel SOL transport
– Parallel transport, balance between downward directed friction force 

and upward directed ion thermal gradient force

– Divertor retention (depends on local plasma parameters and SOL 
flows)

• Radial core transport (neoclassical)
– Diffusive and convective transport 

( ) ( ) ( )1 i z e iz
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Heat flux at outer strike point reduced during gas puff

Gas Puff
discharge

Reference
discharge
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