

Supported by

Office of Science

Triggered Confinement and Pedestal Temperature Enhancement in NSTX H-mode Discharges

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL **PPPL** PSI **Princeton U** Purdue U **SNL** Think Tank, Inc. **UC Davis UC Irvine UCLA** UCSD **U** Colorado **U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Rajesh Maingi, 🦥

R.E. Bell, J.M. Canik, S.P. Gerhardt, S.M. Kaye, B.P. LeBlanc, T.H. Osborne, A. Diallo, E.D. Fredrickson, K.C. Lee, J.E. Menard, J.-K. Park, M. Podesta, S.A. Sabbagh,

and the NSTX Research Team

52nd APS DPP meeting Chicago, IL USA 8-12 Nov 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA. Cadarache IPP, Jülich **IPP.** Garching ASCR, Czech Rep **U** Quebec

Confinement and Pedestal Temperature Enhancement Triggered by an ELM: the Enhanced Pedestal H-mode

- Energy confinement in NSTX H-modes is generally 0.7-1.1* ITER98y2 scaling
 - H_{98y2} is ~ 0.7-0.9 without lithium, 1.0-1.1 with lithium
 - A few next step ST designs based on ~ 50% higher τ_{E}
- An improved confinement scenario with enhanced pedestal T_e,
 T_i in H-mode observed several few years ago
 - Triggered by large ELM, either naturally occurring or triggered with pulsed n=3 fields
 - Local $v_{\scriptscriptstyle \varphi}$ drag near edge, leading to high $E_{\scriptscriptstyle r}$ shear
 - Highest normalized $\tau_{\rm E}$ in NSTX, with $H_{\rm 89P} \leq 3.5$ and $H_{\rm 98y2} \leq 1.7$
 - Pulse length up to 300 msec (~ 3 τ_E)

EP H-modes with sharp pedestal correlated with v_b locked to zero near q=3 surface

NSTX

Long pulse EPH-mode phase observed for up to ~ 300 msec (~ $3 \tau_{\text{E}}$)

- I_p = 0.9 MA, P_{NBI} = 3.8 MW
- Nearly flat n_e
- $W_{MHD} \le 350 \text{ kJ}$
- $\tau_E \ge 80$ msec for 225 msec
- $H_{98y2} \le 1.7$
- Natural ELM
 trigger for EPH

5

Maingi, PRL 2010

Thermal barrier: Edge T_e , T_i double, with a reduction in the edge n_e gradient, and an increase in v_{ϕ} shear

6

Thermal and angular momentum transport reduced in outer half of plasma

Radial shear in V_{ϕ} profile correlated with large region of E_r shear during EP H-mode

Radial shear in V_{ϕ} profile correlated with large region of E_r shear during EP H-mode

T_i pedestal height correlates with edge toroidal rotation shear

3D fields used for ELM pace-making can trigger EP H after 3D fields switched off

Comparisons with other enhanced confinement regimes

- Similarities and differences with VH-mode
 - ✓ Very large spatial region of high E X B shear
 - ✓ Comparable τ_E enhancement with respect to scalings
 - Low recycling ELM-free scenario, with relatively low impurity accumulation
 - X EP H-mode triggered by an ELM
 - X EP H-mode often initiated with localized drag on v_{ϕ} (often @q=3)
- Comparison with QH-mode
 - Higher H-factor in EP H-mode
 - No obvious sign of EHO, but turbulence does increase
- Comparison with I-mode
 - Both have enhanced thermal confinement barriers, without corresponding enhancement of particle confinement

The Enhanced Pedestal H-mode has an improved thermal barrier above H-mode, without an enhancement of particle confinement

- A second transition to enhanced confinement and high pedestal $\rm T_e, \, T_i \leq 950 \ eV$
 - Second transition after large natural or triggered ELM
 - $H_{98y2} \leq 1.7$, in an ELM-free regime
- Common feature: edge v_{φ} develops large gradient due to a large drag, often near the q=3 surface
 - Velocity minimum corresponds to center of T_i barrier
 - Large spatial region of high E_r shear
- Low loop voltage, high β_{N} (due partly to low pressure peaking factor)
 - ✓ high performance, long pulse candidate
 - β_N feedback experiments commencing

NSTX

CAK RIDGE

High β_{pol} results in high bootstrap and non-inductive fraction (f_{NI} ~ 0.65 from TRANSP)

15

CAK RIDGE

Long pulse EPH – density still evolving slowly, Z_{eff} rising, but P_{rad} seems reasonable

EPH-mode phases up to several hundred msec observed recently (more common with lithium?)

17

High β_N phase maintained for 2 τ_F

Many outstanding question on EP H-mode

- How can we reliably trigger on demand?
 - RMP with proper spectrum? Low q_{95} ?
- Where and by how much does the turbulence increase?
- Does lithium enable these in some way?
 - More frequent in past few years with increasing Li usage
- What is the role of edge resonances?
 - q=3 special?
- Is it some combination of VH-mode and QH-mode?
 - Need to assess edge turbulence: any EHO here?
- What is the limit on achievable 'pedestal width'?
 - Should we be calling this a pedestal even?

Comparison of Standard and EP H-mode profiles

EPH may occur naturally in recovery period following ELM/braking triggers

Turbulence changes in EP H-mode (preliminary)

