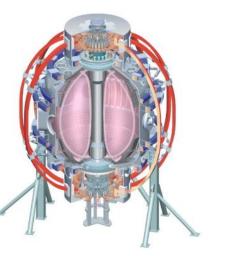
Effect of lithium wall conditioning on heat flux widths in NSTX


Supported by

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INEL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

T.K. Gray^{a,b}, R. Maingi^b, J-W Ahn^b, A.G. McLean^b, V. Soukhanovskii^c and the NSTX Research Team

^aOak Ridge Institute for Science and Education (ORISE) ^bOak Ridge National Laboratory ^cLawrence Livermore National Laboratory

52nd APS Division of Plasma Physics Chicago, IL USA • November 8th – 12th, 2010

U.S. DEPARTMENT OF

ENERGY

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

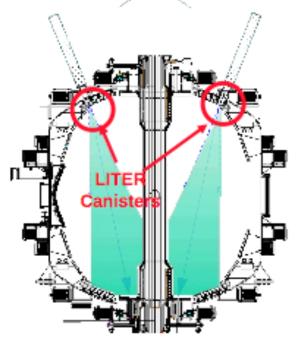
Office of

Science

Outline

- Introduction to NSTX
 - Motivation
 - Wall conditioning techniques
 - Definition of λ_q
- Measurements of heat flux width, λ_{q} with boronization
- Measurements of heat flux width, λ_{q} with lithium wall conditioning
- Summary and Future Work

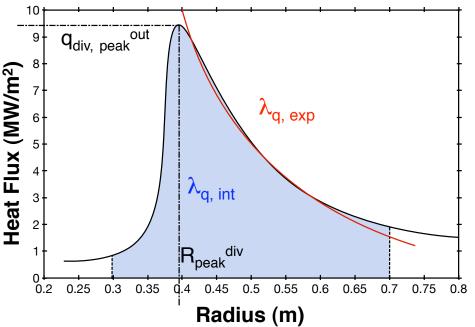
Introduction & Motivation


- Measurements of the divertor heat flux, q and the scale length of the heat flux, λ_q are necessary for understanding thermal transport in the scrape-off layer of tokamak plasmas
- NSTX has measured large divertor heat fluxes
 - Up to peak heat flux of 15 MW/m² has been measured
 - − NSTX-Upgrade ($I_p \le 2$ MA, $P_{NBI} \le 10$ MW, $P_{RF} \le 6$ MW, 5 sec pulse length) is planned for 2014
- NSTX has been actively exploring lithium wall conditioning techniques
- Understanding how the SOL width is altered with the addition of lithium coated PFC's

NSTX has used a variety of wall conditioning techniques

- Boronization + glow discharge cleaning used at the out set of run campaigns
 - Lithium wall conditioning used at least ½ half of the run campaigns since 2006
- Lithium wall conditioning is achieved with LiTERs
 - 2, toroidally seperated high temperature evaporators
 - Main coverage on lower, inner divertor
- In 2010:
 - No Boronization
 - No glow discharge cleaning between shots
 - Deposit between 50 500 mg / shot

LITER EVAPORATORS



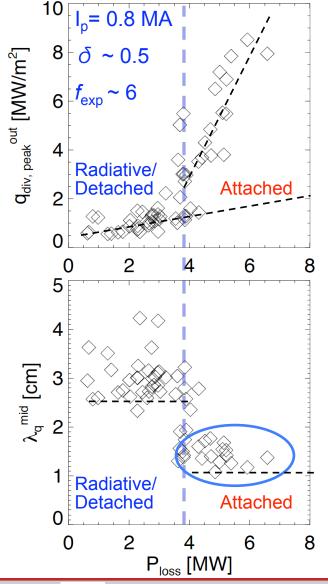
An integral heat flux width is used to determine the dependence of λ_{α}^{mid} on external parameters from NSTX data

- All data is time averaged over small **ELMs**
- IR thermography measures surface temperature of divertor tiles
- Perpendicular heat flux profile estimated from semi-infinite or finite difference models
- Define integral divertor heat flux scale length, λ_a^{div+}

$$\lambda_q^{div} = P_{div}^{out} / \left(2\pi R_{peak}^{div} q_{div,peak}^{out} \right)$$

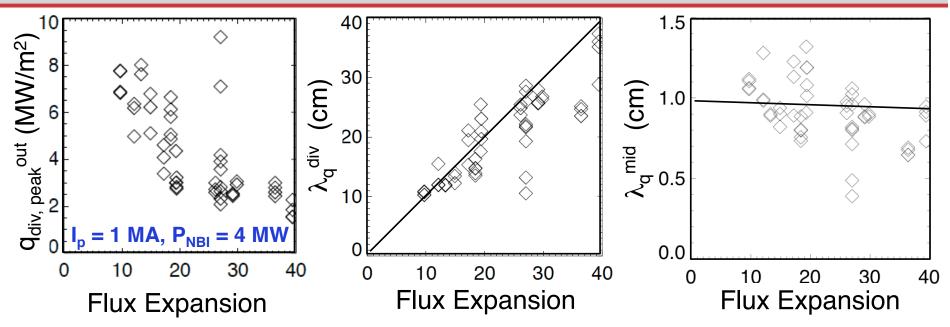
• λ_{α}^{div} related to characteristic midplane scale length through magnetic flux expansion, f_{exp} : $\lambda_q^{mid} = \lambda_q^{div} / f_{exp}$, where $f_{exp} = \frac{R_{mid} B_{\theta}^{mid}}{R_{\pi} B_{\theta}^{div}}$

♣ A. Loarte, et al. JNM. 266—269 (1999) 587—592



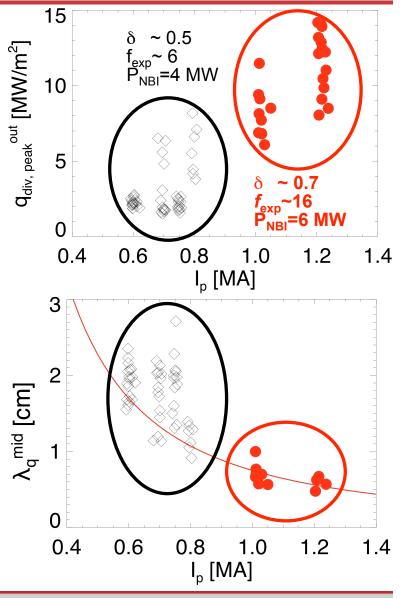
Outline

- Introduction to NSTX
 - Motivation
 - Wall conditioning techniques
 - Definition of λ_q
- Measurements of heat flux width, λ_{q} with boronization
- Measurements of heat flux width, λ_{q} with lithium wall conditioning
- Summary and Future Work


Heat flux width λ_{q}^{mid} relatively independent of P_{loss} in attached plasmas

- Peak divertor heat flux increases with P_{loss}
- Apparent change in slope near
 P_{loss} = 4 MW in these conditions
 - Divertor transitions from radiative/ detached divertor to a attached
 - Similar trend observed in previous experiments [Maingi, JNM. 363-365 (2007) 196-200]
 - Suggests the outer divertor is radiative and/or detached at low P_{loss}
- λ_q^{mid} relatively independent of P_{loss} in high heat flux regime

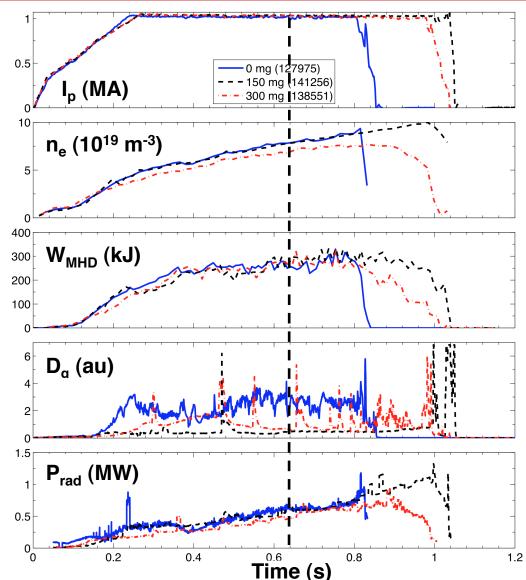
$$-P_{loss} > 4 MW$$


λ_q^{mid} remains relatively constant with increasing f_{exp}

- q_{div,peak} decreases as flux expansion increases
 - Indicates that magnetic flux expansion is a viable candidate to mitigate divertor heat flux
- λ_q^{div} broadens with flux expansion
 - Effectively increasing the plasma wetted area of the divertor
- λ_q^{mid} stays relatively constant during the scan
 - Decreases by 20% over a factor 4—5 scan of f_{exp}
 - Demonstrates that magnetic mapping removes dependency on f_{exp}

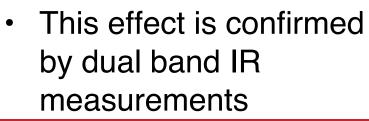
$\lambda_{q}{}^{mid}$ contracts with increasing I $_{p}$ in boronized discharges

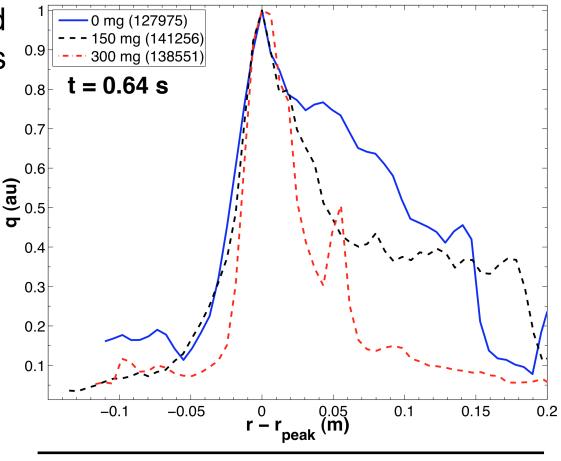
- Combined data from dedicated I_p scans in low δ and high δ discharges
 - Upward scatter in data caused by varying fueling rates
 - Different P_{NBI}, but no P_{loss} dependence in high heat flux regime
 - Magnetic mapping of $\lambda_{q}^{\ \ div}$ to the midplane takes into account varying f_{exp} and δ
- λ_q^{mid} found to scale ~ $I_p^{-1.6}$
 - Using lower 20 % of the data set for a <u>conservative estimate</u>
 - This suggests that for NSTX-U ($I_p = 2 \text{ MA}$) $\lambda_q^{mid} = 3 \pm 0.5 \text{ mm}$


Outline

- Introduction to NSTX
 - Motivation
 - Wall conditioning techniques
 - Definition of λ_q
- Measurements of heat flux width, λ_{q} with boronization
- Measurements of heat flux width, λ_{q} with lithium wall conditioning
- Summary and Future Work

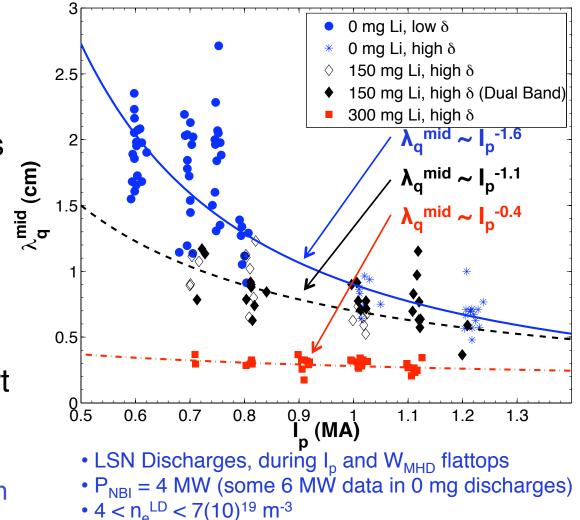
Discharges with varying amounts of lithium show similar characteristics


- Similar line averaged densities
 - Slightly lower in the 300 mg discharge
- Equivalent stored energy at lower P_{NBI}
 - P_{NBI} = 6 MW for 0 mg
 - P_{NBI} = 4 MW for 150 and 300 mg discharges
 - Increase in $\tau_{\rm e}$ for lithiated discharges
- Reduction in Divertor D_{α} with lithium
- Near elimination of ELMs leads to impurity accumulation in the core plasma
 - P_{rad} increases as a result



Divertor λ_q contracts with increasing lithium deposition

- Type V ELMs eliminated from lithiated discharges
 - Some sporadic type I
 ELMs are still present
 - Responsible for some of the contraction in IR profiles
- λ_q^{div} contracts further with increasing lithium deposition



	0 mg	150 mg	300 mg
λ_q^{div} (cm)	14.1	13	7
λ_q^{mid} (cm)	0.98	0.74	0.37

Scaling of λ_q^{mid} with I_p Relaxes with Increased Lithium Deposition

- With out lithium, λ_q^{mid} has shown a strong contraction with I_p
- As increasing amounts of lithium are deposited, this trend relaxes
 - $\ \lambda_q^{mid} \sim I_p^{-0.4} \, at \, 300 \ mg$
- Suggests reduced perpendicular transport in the SOL
 - Modeling with XGC0 suggests λ_q^{mid} ~ I_p⁻¹ with neoclassical transport [JRM 2010 Final Report]

Summary and Discussion

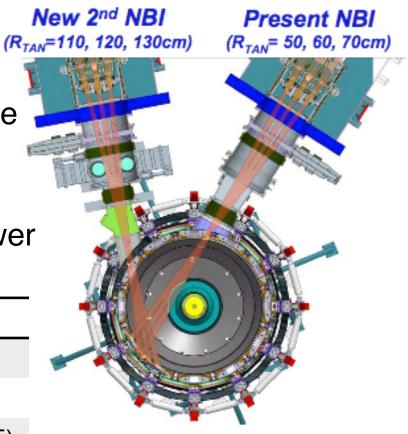
- When boronization is used, $\lambda_q^{\text{mid}} \sim I_p^{-1.6}$
 - This is a stronger dependence than seen on traditional aspect ratio tokamaks
- The addition of evaporative lithium coatings correlates with a contraction of $\lambda_{\mathsf{q}}^{\mathsf{mid}}$
 - Partially due to the elimination of Type V ELMs
 - $-\lambda_q$ appears broader due to time averaging
- However, λ_q continues to contract after the elimination of type V ELMs
 - Resulting in $\lambda_q^{mid} \sim I_p^{-0.4}$
- More transport analysis is required to fully understand the contraction of $\lambda_{\mathsf{q}}^{\mathsf{mid}}$

Back-up Slides

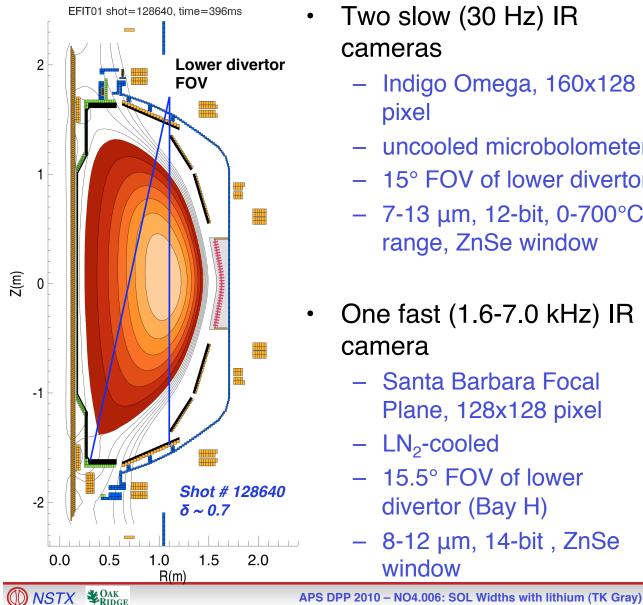
Overview of the National Spherical Torus eXperiment

Slim center column Graphite/CFC PFCs	
Slim center column with TF, OH coils Graphite/CFC PFCs + Lithium coating	R,
	As
	Ele
	Tri
	То
	Pla
	Αι
Excellent	
diagnostic access	Ce
	Ce

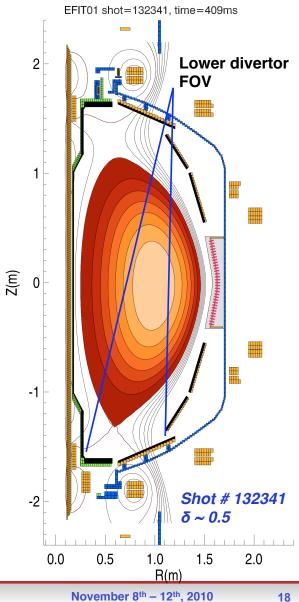
R, a _{max}	0.8, 0.67 m
Aspect Ratio, A	1.27 — 1.6
Elongation, κ	1.6 — 3.0
Triangularity, δ	0.3 — 0.8
Toroidal Field, B _t	0.3 — 0.55 T
Plasma Current, I _p	≤ 1.5 MA
Auxiliary Heating:	
NBI (100 kV)	≤ 7.4 MW
RF (30 MHz)	≤ 6 MW
Central Temperature	1 — 6 keV
Central Density	≤ 1.2(10) ²⁰ m ⁻³



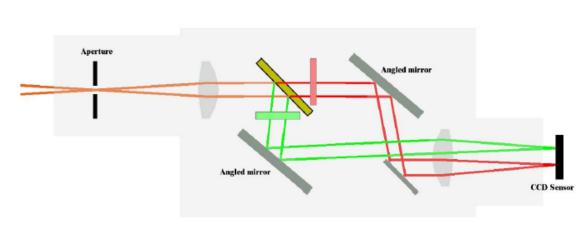
Upgraded NSTX expected to be online in FY2014


- Doubling of neutral beam heating power to 15 MW
- Increase in pulse length to 5 sec
- Will represent a significant increase in expected power deposited onto the divertor
- Techniques to handle the high power densities in NSTX-U are required

NSTX-U Operating Parameters


Plasma Current, I _p	≤ 2 MA
Toroidal Field, B _t	≤ 1 T
Heating Power, P _{heat}	15 MW (NBI) 5 MW (RF)
Pulse Length	≤ 5 s
P/R, R/A	20 MW/m, 0.4 MW/m ²

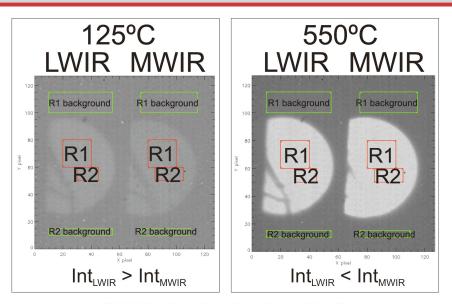
ORNL IR system currently on NSTX

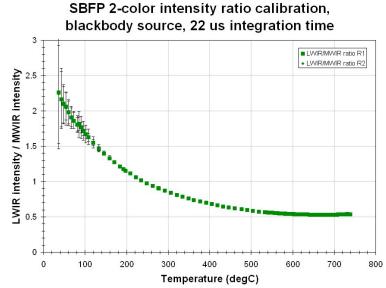


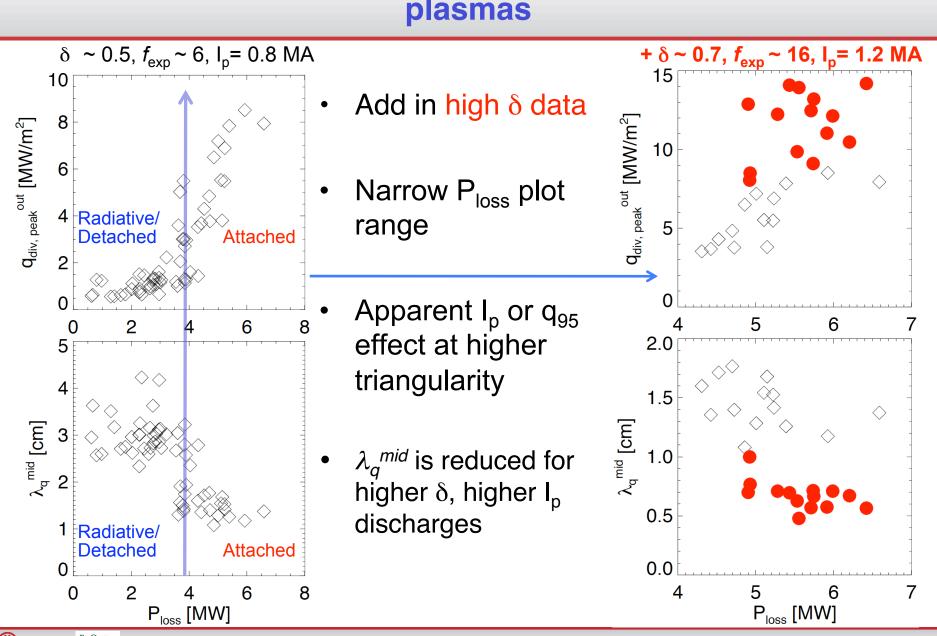
- Two slow (30 Hz) IR cameras
 - Indigo Omega, 160x128 pixel
 - uncooled microbolometer
 - 15° FOV of lower divertor
 - 7-13 μm, 12-bit, 0-700°C range, ZnSe window
- One fast (1.6-7.0 kHz) IR camera
 - Santa Barbara Focal Plane, 128x128 pixel
 - LN₂-cooled
 - 15.5° FOV of lower divertor (Bay H)
 - 8-12 μm, 14-bit , ZnSe window

A two-color infrared imaging adaptor for the fast IR camera on NSTX [6]

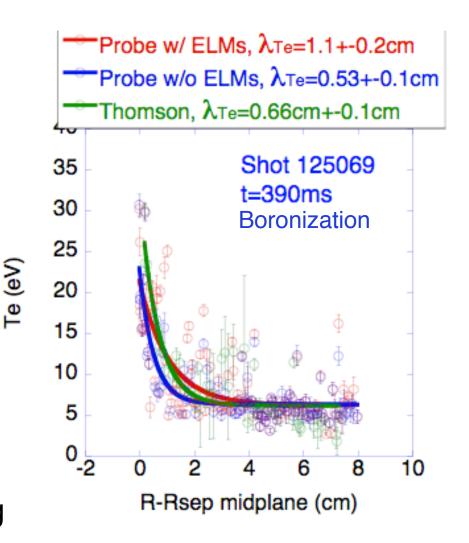
- Use of the LLD in NSTX will make assumptions of high surface emissivity (applicable to graphite) inaccurate
 - Complications include: Surface coating changes in real time during plasma shots, emissivity changes due to H-absorption in Li, reflections from Li surface, deposition of Li on C surfaces, erosion/transport of Li and C
- Two-color camera measures temperature based on the ratio of integrated IR emission in two IR bands, not single band intensity
- Image split into medium wavelength IR (4-6 μm) and long-wavelength IR (7-10 μm) using a dichroic beamsplitter, filtered with bandpass filters, projected side-by-side into the NSTX fast IR camera (1.6 kHz full frame)






Calibration and physics application of two-color IR

- Calibration accomplished *ex*situ using a 0-750°C blackbody source
 - Useful, low error LWIR/MWIR ratio from ~100-600°C
- Additional in-situ calibration during heating of LLD plates from 0-320°C
 - Shows extended useful range due to losses in MWIR channel
- True radial view of NSTX
 lower floor
 - View of inner divertor (graphite), CHI gap, and LLD plates



Heat flux width λ_q^{mid} largely independent of P_{loss} in attached plasmas

Elimination of small, Type V ELMs is responsible for part of the contraction in SOL width

- λ_q^{div} is related to the upstream electron temperature scale length, λ_{Te}^{mid}
- In boronized discharges, $\lambda_{Te, ELMs} > \lambda_{Te, no ELMs}$ measured with midplane reciprocated probe
 - Probe plunge acts to average over all ELMs and blobs
 - Whereas λ_{Te} measured by Thomson scattering is instantaneous (misses ELMs)
- Therefore, SOL width can appear broader when averaging over ELMs

