Edge Stability of Small-ELM Regimes in NSTX

Supported by

College W&M **Colorado Sch Mines** Columbia U CompX **General Atomics** INL Johns Hopkins U LANL LLNL Lodestar MIT **Nova Photonics** New York U **Old Dominion U** ORNL PPPL PSI **Princeton U** Purdue U SNL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Washington **U Wisconsin**

Aaron Sontag

J. Canik, R. Maingi, R. Bell, S. Gerhardt, S. Kubota, B. LeBlanc, J. Manickam, T. Osborne, P. Snyder, K. Tritz

and the NSTX Research Team

APS - DPP Chicago, II Nov. 10, 2010

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kvushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati CEA, Cadarache **IPP, Jülich IPP**, Garching ASCR, Czech Rep **U** Quebec

Office of

Science

U.S. DEPARTMENT OF

FNFRGY

Small-ELM Regime in NSTX Coincident with Edge Instability

- Small-ELM (Type-V*) operation desirable
 - $\delta W_{MHD} < 1\%$ per ELM

*R. Maingi, et al., Nucl. Fusion 45 (2005) 264

- Stabilization of Type-I
 - Type-V always present?
- Downward bias & high edge v^* required
 - δ_r^{sep} < -5 mm necessary
 - $v_{ped}^* > 1-2$
- Low-f (< 10 kHz) oscillations coincident with Type-I ELM transition
 - ST equivalent to edge harmonic oscillation (EHO)?
 - EHO allows access to ELM-free QH-mode at standard-A
 - EHO provides edge transport, reduces peeling-ballooning instability drive

Edge Instability Observed in Multiple Diagnostics

- USXR signal peaks in pedestal
 - peak amplitude in outermost channel with signal 10
 - 10 μm Be filter eliminates edge light
 - unfiltered USXR shows ELM spikes
 - oscillations not observed inside 130 cm
- Edge reflectometer shows very weak density fluctuations
 - R_{cutoff} ~ 142 cm during mode
 - relatively weak compared to core modes
- Edge transport analysis needed to determine if mode is affecting stability
 - accounting for particle sources and sinks
- ELM spikes may be manifestation of mode
 - stabilization of Type-I allowing mode to grow

time (s)

Type-I ELM Stabilization Observed with Change in Triangularity

- Both shots have Type-I prior to 0.3 s
 - $-~\delta W_{MHD}$ > 10% for Type-I
 - δW_{MHD} < 1% for Type-V
- δ ramp down triggers transition
 - other shape parameters constant
 - plasma moves down in vessel
- Multiple factors could be affecting edge stability
 - shape change affects peeling-ballooning of stability
 - downward motion changing $\delta_{r}^{\text{ sep}}$
 - fueling affected by moving lower X-point near divertor plate

Multiple Time Slice Averaging Used to Analyze Profiles

- Technique developed on DIII-D
 - run EFIT at TS laser times
 - map n_e , T_e , T_i to ψ_N space
 - fit tanh function to re-mapped profiles
 - kinetic EFIT using tanh fits
 - calculate j_{BS} from Sauter model
- Pedestal pressure peak shifted inward & increased for Type-V
 - P_e nearly identical
 - P_i most strongly affected
- Type-V case has higher magnitude pressure gradient
- Need more shots for statistics

Increased Collisionality May Affect Edge Stability

- No correlation with toroidal rotation or rotation shear
 - consistent across single time database and multi time slice averaged profiles
 - large error bars near edge
 - large relative fluctuations
- Edge collisionality increased in Type-V case
 - consistent with previous observation of increased v^* stabilizing Type-I*
 - is collisionality altering j_{BS} or indicative of increased edge pressure?

*R. Maingi, et al., Nucl. Fusion 45 (2005) 264

Reduced Edge Current Consistent with Type-I Stabilization

- Edge current slightly reduced when Type-I stabilized
 - j_{BS} slightly increased in Type-V case
 - increased pressure dominating over increased $\boldsymbol{\nu}^{*}$
- Additional shots being analyzed for statistics
 - need peeling-ballooning stability calculations, not just <j> comparison

ELITE Shows Type-V Case Closer to Ballooning Boundary

- n = 3 most unstable for both cases
 - calculation run for n = 3, 6, 9, 12, 15
 - PEST also shows n = 3 most unstable
 - NSTX typically on peeling side of curve
 - ST geometry naturally leads to higher j_{BS}
 - high shaping stabilizing to ballooning
- Decreased δ moves ballooning boundary closer to operating point
 - near to n = 15
 - n = 1 or 2 seen in USXR due to Type-V filaments
- Change in stability space not the same as ELMy to QH-mode change
 - EHO moves operating point across peeling boundary in DIII-D
 - both NSTX cases still on peeling boundary

Further Analysis Required to Determine Cause of Stabilization of Type-I ELMs

- Edge instability observed coincident with small-ELM transition
 - observed in many NSTX discharges
 - may have similar role to EHO at normal-A → need to determine how instability affects transport
 - mode may be source of Type-V ELM spikes
- No correlation with toroidal rotation or rotation shear
 - need to examine ExB shearing rate
- Increased collisionality ($v_e^* > 2$) and $\delta_r^{sep} < -5$ mm needed for Type-I ELM stabilization
 - Type-V cases have increased pedestal pressure
- Stability analysis shows Type-V case closer to ballooning boundary
 - need to include MSE in equilibrium reconstructions
 - need to analyze more shots for better statistics
- Need to include particle sources and sinks to determine if mode is affecting transport
 - is mode just the result of stabilizing Type-I ELMs?