

Supported by

Progress Toward Stabilization of Low Internal Inductance Spherical Torus Plasmas in NSTX

College W&M **Colorado Sch Mines** Columbia U Comp-X **General Atomics** INEL Johns Hopkins U LANL IINI I odestar MIT Nova Photonics New York U Old Dominion U ORNL PPPL PSI Princeton U Purdue U Sandia NL Think Tank, Inc. UC Davis **UC** Irvine UCLA UCSD **U** Colorado **U** Marvland **U** Rochester **U** Washington **U** Wisconsin

V1.6

S.A. Sabbagh¹, J.W. Berkery¹, J.M. Bialek¹, S.P.
Gerhardt², R.E. Bell², O.N. Katsuro-Hopkins¹, J.E.
Menard², R. Betti^{2,3}, L. Delgado-Aparicio², D.A.
Gates², B. Hu³, B.P. LeBlanc², J. Manickam², D.
Mastrovito², J.K. Park², Y.S. Park¹, K. Tritz⁴

¹Department of Applied Physics, Columbia University, NY, NY ²Plasma Physics Laboratory, Princeton University, Princeton, NJ ³University of Rochester, Rochester, NY ⁴Johns Hopkins University, Baltimore, MD

> 52nd APS DPP Meeting November 9th, 2010 Chicago, Illinois

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kvoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA. Frascati **CEA.** Cadarache **IPP, Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Future ST fusion applications will have high elongation, broad current profiles, high normalized beta

J. Menard, et al., IAEA FEC 2010 Paper FTP/2-2

2

- Broad current profiles (low I_i) consistent with high bootstrap current fraction; important to maintain high elongation
- Demonstrating / understanding kink / RWM stability at low I_i is important

NSTX is Addressing Global Stability Needs for Maintaining Low I_i, High Beta Plasmas for Fusion Applications

Motivation

- Achieve high β_N with sufficient physics understanding to allow confident extrapolation to spherical torus applications (e.g. ST Component Test Facility, ST-Pilot plant, ST-DEMO)
 NP9.00011 Peng UP9.00006 Hawryluk
- **Sustain** target β_N of ST applications with margin to reduce risk
- Leverage unique ST operating regime to test physics models, apply to ITER

Physics Research Addressed

- Plasma operation at low plasma internal inductance (I_i)
- Resistive wall mode (RWM) destabilization at high plasma rotation
- RWM active control enhancements / advances at low l_i
- Combined control systems to maintain $<\beta_N>_{pulse}$ at varied ω_{ϕ}
- **D** Multi-mode RWM spectrum in high β_N plasmas

NSTX is a spherical torus equipped for passive and active global MHD control, application of 3D fields

- High beta, low aspect ratio
 - □ R = 0.86 m, A > 1.27
 - \Box I_p < 1.5 MA, B_t = 5.5 kG
 - $\Box \quad \beta_t < 40\%, \ \beta_N < 7.4$
- Copper stabilizer plates for kink mode stabilization
- Midplane control coils
 - □ n = 1 3 field correction, magnetic braking of ω_{ϕ} by NTV
 - $\square n = 1 \text{ RWM control}$
- Varied sensor combinations used for RWM feedback
 - □ 48 upper/lower B_p, B_r

□ Next-step ST fusion devices aim to operate at low I_i (high bootstrap current fraction > 50%) and high β_N

G Focus on sustained low I_i and high $<\beta_N>_{pulse}$

- β_N/l_i is a common parameter to evaluate global stability
 - Kink/ballooning and RWM stability
- Significant increase in maximum β_N/l_i

 Upper limit now between 13 - 14

- β_N/l_i is a common parameter to evaluate global stability
 - Kink/ballooning and RWM stability
- Significant increase in maximum β_N/l_i

 Upper limit now between 13 - 14

- At sufficiently low l_i, "current driven kink" limit exists
 - Plasma unstable without conducting wall, or FB control, at any β_N value

Ideal no-wall stability limit decreases for low l_i plasmas

- Examine high plasma current, I_p >= 1.0MA, high non-inductive fraction ~ 50%
- Ideal n = 1 no-wall stability computed for discharge trajectory

- Examine high plasma current, I_p >= 1.0MA, high non-inductive fraction ~ 50%
 - Ideal n = 1 no-wall stability computed for discharge trajectory
 - Plasma exceeds no-wall limit at β_N = 3.4, l_i = 0.51
 - □ Adding trajectories yields $\beta_N/I_i = 6.7$ for $I_i = 0.38 - 0.5$
 - Significantly lower than usual no-wall limit at higher I_i (β_N = 4.3)

Experiments aimed to produce sustained low I_i and high β_N

High I_p >= 1.0MA, high non-inductive fraction ~ 50%

Initial experiments

- Yielded low I_i
- Access high β_N/l_i
- High disruption probability
- Instabilities leading to disruption
 - Unstable RWM
 - Half of cases run
 - Locked tearing modes

(NEW SLIDE HERE – show improved long-pulse shots – segway to rest of talk) sustained low I_i and high β_N

High I_p >= 1.0MA, high non-inductive fraction ~ 50%

Latest experiments

- Yielded low I_i
- Access high β_N/l_i
- Reduced disruption probability (EXPLAIN THIS)

Characterization of Disruption Stats and Wtot variation here

- Show improved disruption statistics and Wtot variation
- Disruption Statistics
- Wtot variation

Low plasma rotation level (~ 1% ω_{Alfven}) is insufficient to ensure RWM stability, which depends on ω_{ϕ} profile

Modification of Ideal Stability by Kinetic theory (MISK code) investigated to explain experimental RWM stabilization

- □ <u>Reason</u>: simple critical ω_{ϕ} threshold stability models do not fully describe RWM marginal stability in NSTX Sontag, et al., Nucl. Fusion **47** (2007) 1005.
- Kinetic modification to ideal MHD growth rate
 - Trapped / circulating ions, trapped electrons, etc.
 - Energetic particle (EP) stabilization
- Stability depends on
 - □ Integrated <u> ω_{ϕ} profile</u>: resonances in δW_{κ} (e.g. ion precession drift)
 - Particle <u>collisionality</u>, EP fraction

 $\gamma \tau_{_W} = -\frac{\delta W_{_\infty} + \delta W_{_K}}{\delta W_{_b} + \delta W_{_K}}$

Hu and Betti, Phys. Rev. Lett **93** (2004) 105002.

 $\underline{\omega}_{\phi}$ profile (enters through ExB frequency)

<u>Trapped ion component of δW_{κ} (plasma integral)</u>

$$\delta W_{K} \propto \int \left[\frac{\omega_{*N} + (\hat{\varepsilon} - \frac{3}{2})\omega_{*T} + \omega_{E} - \omega - i\gamma}{\langle \omega_{D} \rangle + l\omega_{b} - i\nu_{eff} + \omega_{E} - \omega - i\gamma} \right] \hat{\varepsilon}^{\frac{5}{2}} e^{-\hat{\varepsilon}} d\hat{\varepsilon} \qquad \leftarrow \text{Energy integral}$$

MISK calculations consistent with RWM destabilization at intermediate plasma rotation; stability altered by collisionality

Destabilization appears between precession drift resonance at low ω_φ,
 bounce/transit resonance at high ω_φ
 J.W. Berkery, et al., PRL 104 (2010) 035003
 S.A. Sabbagh, et al., NF 50 (2010) 025020

MISK calculations consistent with RWM destabilization at intermediate plasma rotation; stability altered by collisionality

 Destabilization appears between precession drift resonance at low ω_φ, bounce/transit resonance at high ω_φ
 J.W. Berkery, et al., PRL 104 (2010) 035003 S.A. Sabbagh, et al., NF 50 (2010) 025020

MISK calculations consistent with RWM destabilization at intermediate plasma rotation; stability altered by collisionality

Destabilization appears between precession drift resonance at low ω_φ, J.W. Berkery, et al., PRL 104 (2010) 035003 S.A. Sabbagh, et al., NF 50 (2010) 025020
 Destabilization moves to increased ω_φ as v decreases

MISK calculations show reduced stability in low I_i target plasma as ω_{ϕ} is reduced, RWM instability is approached

Stability evolves

- I_i increases in time as RWM instability is approached, but remains low (I_i = 0.42)
- MISK computation shows plasma to be stable at time of minimum l_i
- Region of reduced stability vs. ω_φ found before RWM becomes unstable (I_i = 0.49)
 - Co-incident with a drop in edge density gradient – reduces kinetic stabilization

RWM stability vs. ω_{ϕ} (contours of $\gamma \tau_{w}$)

MISK application to ITER (advanced scenario IV)

- RWM unstable at expected rotation
- Only marginally stabilized by alphas at $\beta_N = 3$
 - BP9.00057 J. Berkery, et al.
 - Also, see poster for detail

(Bp Feedback Phase Slide): Adjusting B_p sensor feedback phase around 180 degrees led to long-pulse, low I_i , high β_N/I_i

OD

(Br sensor slide – combine gain and phase scan?): RWM B_R sensor feedback reduces n= 1 radial error field significantly

RWM B_r sensor n= 1 feedback phase variation shows clear settings for positive/negative feedback

- B_r sensor feedback phase scan shows superior settings
 - Result clarified significantly by new MIU algorithm OHxTF compensation
- Positive/negative feedback produced at expected phase values
 - □ 180° negative FB
 - □ 90° positive FB
 - n=1 growth/decay of other settings bracketed by these settings

(ADD Mode dynamics / physics here): Use of combined RWM sensor n= 1 feedback yields best reduction of n = 1 fields / improved stability

- Varied levels of n
 > 1 field correction
 - n = 3 DC error field correction alone more subject to RWM instability
 - n = 1 B_p sensor fast feedback sustains plasma
 - Addition of n = 1
 B_R sensor FB
 prevents
 disruptions
 when amplitude
 reaches ~ 9G,
 better sustains
 rotation

B_R sensors added: longest pulse plasmas, high performance

β_N feedback combined with n = 1 RWM control to reduce β_N fluctuations at varied plasma rotation levels

(0)

- Prelude to ω_φ
 control
 - Reduced $ω_{\phi}$ by n = 3 braking is compatible with $β_N$ FB control
- Steady β_N established over long pulse
- Radial field sensors added to n = 1 feedback (2010)
 - Full sensor set further reduces
 n = 1 amplitude, improves control

New RWM state space controller (RWMSC) implemented to sustain high β_N

RWM state space controller with 2 states reproduces initial sensor response to mode

Reasonable match to all B_p sensors during RWM onset, large differences later in evolution

Black: experiment Red: offline RWMSC

RWM state space controller with 7 states improves match to sensors over entire evolution

New RWM state space controller sustains high β_N plasma

Multi-mode RWM computation shows 2^{nd} eigenmode component has dominant amplitude at high β_N in NSTX stabilizing structure

δBⁿ from wall, multi-mode response

D NSTX RWM not stabilized by ω_{ϕ}

- Computed growth time consistent with experiment
- 2nd eigenmode ("divertor") has larger amplitude than ballooning eigenmode

D NSTX RWM stabilized by ω_{ϕ}

- Ballooning eigenmode amplitude decreases relative to "divertor" mode
- Computed RWM rotation ~ 41 Hz, close to experimental value ~ 30 kHz
- ITER scenario IV multi-mode spectrum
 - Significant spectrum for n = 1 and 2

BP9.00059 J. Bialek, et al.

ITER Advanced Scenario IV: multi-mode RWM spectra computation shows significant ideal eigenfunction amplitude for several components

NSTX is Addressing Global Stability Needs Furthering Steady Operation of High Performance Plasmas

	Implications for			
Physics addressed	<u>(NB</u>	<u>Future STs</u> I-driven, high ω _φ	<u> </u>) <u>s</u>	<u>TER advanced</u> scenarios (low ω _φ)
RWM instability observed at intermediate ω_{ϕ} correlates with kinetic stability theory				Sufficient EP stabilization needed at low ω_{ϕ}
n = 1 RWM, β_N feedback control maintains high β_N at varied ω_{ϕ} using n = 3 NTV ω_{ϕ} profile modification		Potential control compatibility		Potential control at low ω_{ϕ} if EP stabilization insufficient
(text)		(text)		(text)
Initial success of RWM state space controller at high β_N		More flexibility of control coil placement		More flexibility of control coil placement
Multi-mode RWM physics spectrum		Determine RWM control impact		Determine RWM control impact

(0)