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Introduction 

•  Seek to maximize HHFW heating inside last closed flux surface (LCFS) to 
support fully non-inductive Ip ramp-up & sustainment 

•  12-strap antenna has well-defined spectrum, providing good control of 
deposition & RF current drive direction 

•  Double-feed antenna upgrade installed in 2009: 

  Stand off voltage did not improve as much as predicted  

  Voltage appears limited by RF currents induced in antenna surface 

  Voltage limit increases with sufficient antenna conditioning 

•  Last year reported improved RF coupling to NBI H-modes & low Ip 
discharges by using lithium conditioning: 

  This year extensive lithium conditioning seriously compromised RF performance 
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•  In 2009 quickly reached arc-free PRF = 2-3 MW & arc-free PRF ~ 4 MW 
by end of campaign 

•  Following extensive lithium conditioning this year only reached 
PRF ~ 1.5 MW arc-free operation & observed copious lithium ejection 
associated with arcing 

  Before lithium conditioning quickly  

reached a stand-off voltage 

of 25 kV during RF vacuum 

conditioning 

  Later in campaign difficult to reach  

even ~ 15 kV 

Lithium ejection (green light) from 
top of antenna at time of RF arc 
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Significant RF power flow to lower divertor: RF heating 
pattern on the divertor plate follows the magnetic pitch 

4 

Bay I 

IR view 

Bay I 

IR view 

kφ = - 8 m-1 
452 ms 455 ms kφ = - 8 m-1 

135333 135325 

Bay I 

IR view 

Bay I 

IR view 

HHFW 
Antenna 

HHFW 
Antenna 



High-Harmonic Fast Wave (HHFW) Heating Results on NSTX (Taylor)  November 10, 2010 52nd APS-DPP NO4.00013 Rev. 6 5 

Large ELMs create higher RF power flow to lower divertor & 
reduce RF heating efficiency in RF+NBI & RF-only H-modes 

•  Significant RF power loss to divertor during large ELMs  
due to direct core heat loss and higher edge density: 

  IR camera images show ELMs heat plasma strike 
point in divertor, not the primary RF-heated zone 

  Much less RF power loss to divertor in ELM-free 
H-mode or during "Grassy" ELMs 
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TRANSP-TORIC analysis of matched NBI+HHFW & NBI-only ELM-
free H-modes predicts ~ 50% of PRF is absorbed inside LCFS 

•  Fraction of PRF absorbed within LCFS (fA) 
obtained from TRANSP-calculated electron 
stored energy: 
WeX – from HHFW+NBI H-mode 

WeR – from matched NBI-only H-mode 

WeP – using χe from NBI-only H-mode to 
predict Te in HHFW+NBI H-mode 

•  fA = (WeX-WeR)/(WeP-WeR) = 0.53 ± 0.07 

•  TORIC used to calculate the power 
absorbed by electrons (PeP) assuming 
100% RF plasma absorption 

•  Electron absorption, PeA= fA × PeP 
For PRF = 1.9 MW: 

–  0.7 MW        electrons 

–  0.3 MW        ions 
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CQL3D Fokker-Planck code predicts significant fast-ion 
losses in HHFW-heated ELM-free NBI H-modes 

•  Without fast-ion loss CQL3D predicts much higher neutron 
production rate (Sn) than is measured 

•  Simple-banana-loss model predicts  
Sn just below measured Sn : 
  Assumes fast-ions with gyro radius  

+ banana width > distance to  
LCFS are promptly lost 

  ~ 60% RF power to fast-ions is lost  

•  No change in fast-ion density during  
HHFW heating measured by FIDA 

•  First-order finite-orbit width loss model being implemented 
in CQL3D 
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Strong electron absorption associated with "Slow Wave" in 
"high-resolution" full-wave simulations of HHFW in NSTX 

Re(E//) Pe 

AORSA 

HHFW+ NBI H-mode Shot 130608 with k// ~ -7.5 m-1 
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•  “Slow Wave" mode seen  
  mainly in E//, not E+ or E-  

•  Mode is localized mainly  
 off mid-plane 

•  Model predicts strong  
  electron absorption  
  near the "Slow Wave" 
  propagation regions  

•  "Slow Wave" mode seen in  
  both AORSA and TORIC  
  full-wave simulations 
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AORSA full-wave model with limiter boundary predicts large ERF 
fields following magnetic field near top & bottom of plasma 

•  Some fast-wave power 
propagates as an edge 
localized eigenmode just 
inside LCFS 

•  Magnitude of edge ERF 
eigenmode is larger for 
negative antenna phasing 

•  Similar to plasma TV 
images – but ERF stronger 
towards upper divertor in 
simulation  

•  For -30o antenna phasing 
(kφ = -3 m-1) fast-wave 
propagates outside LCFS  
to wall 
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Summary 

•  Extensive lithium conditioning significantly degraded RF performance;  
arc-free PRF ~ 1.5 MW, compared to PRF ~ 4 MW in 2009 

•  Pattern of RF heating on divertor during H-mode follows magnetic field 

•  RF power flow to divertor is higher during large ELMs 

•  ~ 50% PRF absorbed inside the LCFS during ELM-free RF+NBI H-modes 

•  Strong electron absorption associated with "Slow Wave" seen in  
"high-resolution" full-wave simulations 

•  3-D AORSA full-wave simulations with boundary at limiter predict ERF 
follows magnetic field near top and bottom of plasma 
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• Spherical torus needs fully non-inductive Ip ramp-up & sustainment 

• Low Ip HHFW experiments in 2005 could not maintain PRF during H-mode 

• This year generated sustained RF H-mode with internal transport barrier (ITB)   

  Better plasma-antenna gap control than in 2005 (Reduced PCS latency) 

  Vloop~ 0 and dIOH/dt ~ 0, but need Prf ≥ 3 MW for fully non-inductive H-mode 
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