

High-Harmonic Fast Wave (HHFW) Heating Results on NSTX

Gary Taylor¹

R. E. Bell¹, P. T. Bonoli², D. L. Green³, B. P. LeBlanc¹, C. K. Phillips¹, P. M. Ryan³, E. J. Valeo¹, J. R. Wilson¹,

> ¹Princeton Plasma Physics Laboratory ²MIT Plasma Science and Fusion Center ³Oak Ridge National Laboratory ⁴CompX

> > NO4.00013 Revision 6

52nd Annual Meeting of the Division of Plasma Physics Chicago, Illinois, November 8-12, 2010

In collaboration with

R. W. Harvey⁴, J. C. Hosea¹, E. F. Jaeger³, and the NSTX Team

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U

> Hyogo U Kyoto U Kyushu U

Kyushu Tokai U NIFS

> Niigata U U Tokyo

JAEA Hebrew U

loffe Inst RRC Kurchatov Inst

TRINITI KBSI

KAIST **POSTECH**

ASIPP ENEA, Frascati

CEA, Cadarache

IPP. Jülich IPP, Garching

ASCR, Czech Rep

U Quebec

College W&M Colorado Sch Mines Columbia U Comp-X

General Atomics

INL

Johns Hopkins U LANL

LLNL Lodestar MIT

Nova Photonics New York U

Old Dominion U

ORNL PPPL

PSI

Princeton U Purdue U

SNL

Think Tank, Inc. **UC Davis**

UC Irvine UCLA

UCSD

U Colorado

U Maryland

U Rochester **U Washington**

U Wisconsin

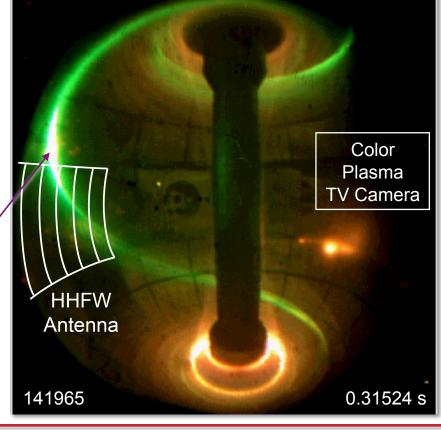
Introduction

- Seek to maximize HHFW heating inside last closed flux surface (LCFS) to support fully non-inductive I_D ramp-up & sustainment
- 12-strap antenna has well-defined spectrum, providing good control of deposition & RF current drive direction
- Double-feed antenna upgrade installed in 2009:
 - Stand off voltage did not improve as much as predicted
 - Voltage appears limited by RF currents induced in antenna surface
 - Voltage limit increases with sufficient antenna conditioning
- Last year reported improved RF coupling to NBI H-modes & low I_p discharges by using lithium conditioning:
 - > This year extensive lithium conditioning seriously compromised RF performance

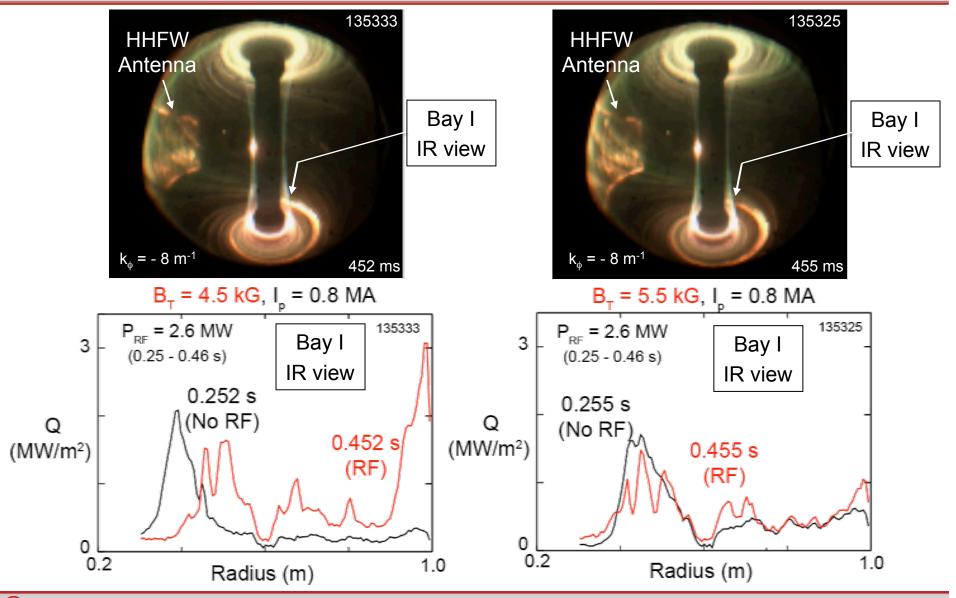
Extensive lithium conditioning this year significantly degraded antenna performance compared to 2009

 In 2009 quickly reached arc-free P_{RF} = 2-3 MW & arc-free P_{RF} ~ 4 MW by end of campaign

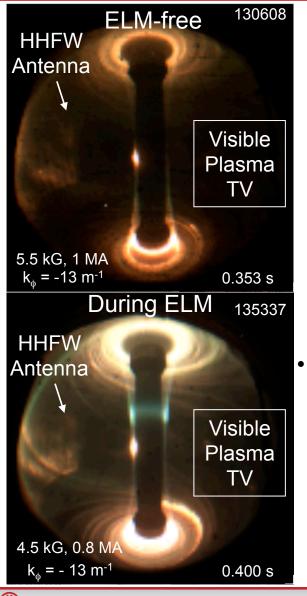
Following extensive lithium conditioning this year only reached
 P_{RF} ~ 1.5 MW arc-free operation & observed copious lithium ejection

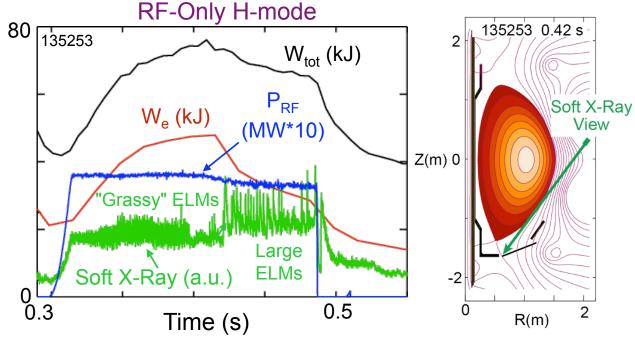

associated with arcing

 Before lithium conditioning quickly reached a stand-off voltage of 25 kV during RF vacuum conditioning


Later in campaign difficult to reach even ~ 15 kV

Lithium ejection (green light) from top of antenna at time of RF arc


P. M. Ryan, et al., Poster BP9.00073, Mon AM



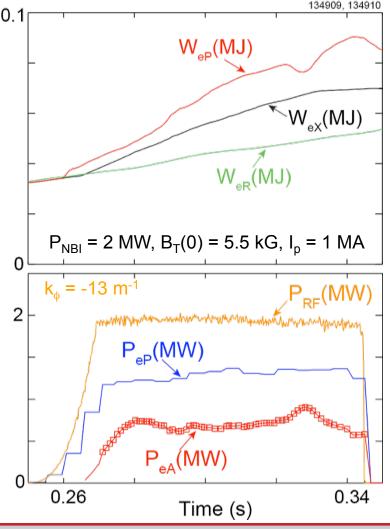
Significant RF power flow to lower divertor: RF heating pattern on the divertor plate follows the magnetic pitch

Large ELMs create higher RF power flow to lower divertor & reduce RF heating efficiency in RF+NBI & RF-only H-modes

- Significant RF power loss to divertor during large ELMs due to direct core heat loss and higher edge density:
 - ➤ IR camera images show ELMs heat plasma strike point in divertor, not the primary RF-heated zone
 - Much less RF power loss to divertor in ELM-free H-mode or during "Grassy" ELMs

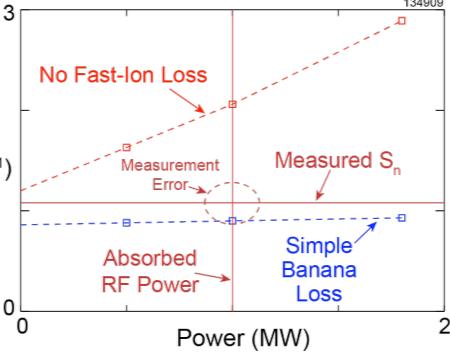
J. Hosea, et al., Poster BP9.00074, Mon AM

TRANSP-TORIC analysis of matched NBI+HHFW & NBI-only ELM-free H-modes predicts $\sim 50\%$ of P_{RF} is absorbed inside LCFS


 W_{eP} – using χ_e from NBI-only H-mode to predict T_e in HHFW+NBI H-mode

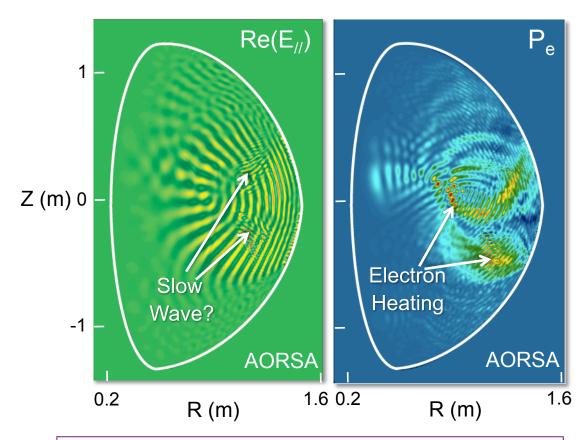
•
$$f_A = (W_{eX}-W_{eR})/(W_{eP}-W_{eR}) = 0.53 \pm 0.07$$

- TORIC used to calculate the power absorbed by electrons (P_{eP}) assuming 100% RF plasma absorption
- Electron absorption, P_{eA}= f_A × P_{eP}


For
$$P_{RF} = 1.9 \text{ MW}$$
:

- − 0.7 MW → electrons
- 0.3 MW **→** ions

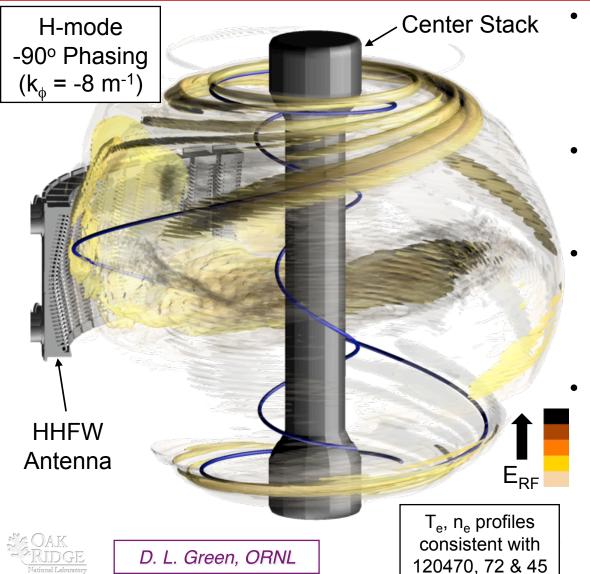
CQL3D Fokker-Planck code predicts significant fast-ion losses in HHFW-heated ELM-free NBI H-modes


- Without fast-ion loss CQL3D predicts much higher neutron production rate (S_n) than is measured
- Simple-banana-loss model predicts
 S_n just below measured S_n:
 - Assumes fast-ions with gyro radius
 + banana width > distance to
 LCFS are promptly lost
 (10¹⁴s⁻¹)
 - > ~ 60% RF power to fast-ions is lost
- No change in fast-ion density during HHFW heating measured by FIDA

First-order finite-orbit width loss model being implemented in CQL3D

B. P. LeBlanc, et al., Poster BP9.00076, Mon AM

Strong electron absorption associated with "Slow Wave" in "high-resolution" full-wave simulations of HHFW in NSTX

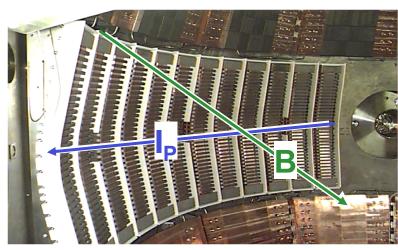


HHFW+ NBI H-mode Shot 130608 with $k_{//} \sim -7.5 \text{ m}^{-1}$

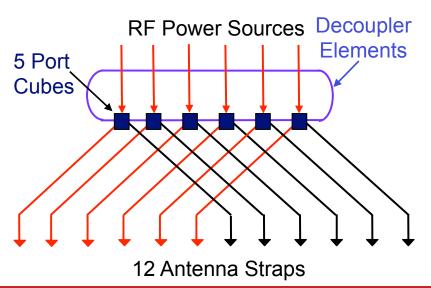
C. K. Phillips, et al., Poster BP9.00075, Mon AM

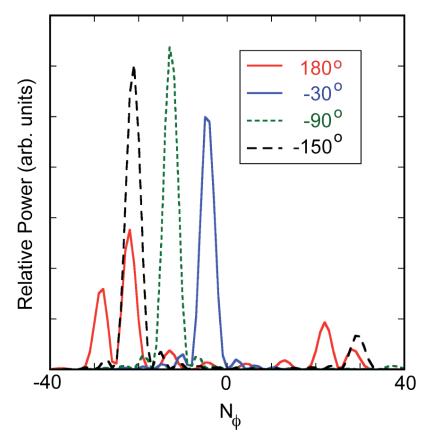
- "Slow Wave" mode seen mainly in E_{//}, not E₊ or E₋
- Mode is localized mainly off mid-plane
- Model predicts strong electron absorption near the "Slow Wave" propagation regions
- "Slow Wave" mode seen in both AORSA and TORIC full-wave simulations

AORSA full-wave model with limiter boundary predicts large E_{RF} fields following magnetic field near top & bottom of plasma


- Some fast-wave power propagates as an edge localized eigenmode just inside LCFS
- Magnitude of edge E_{RF}
 eigenmode is larger for
 negative antenna phasing
- Similar to plasma TV images – but E_{RF} stronger towards upper divertor in simulation
 - For -30° antenna phasing $(k_{\phi} = -3 \text{ m}^{-1})$ fast-wave propagates outside LCFS to wall

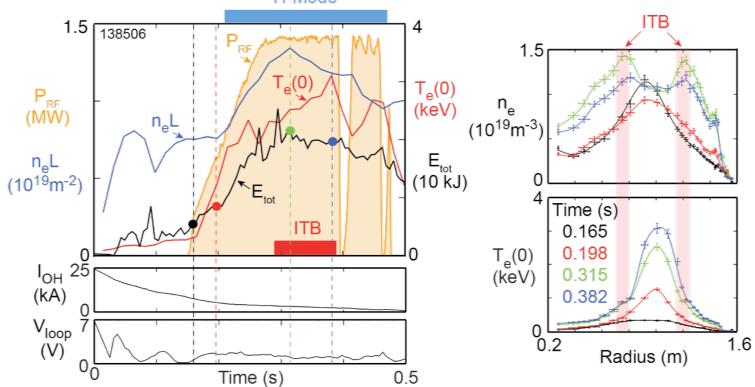
Summary


- Extensive lithium conditioning significantly degraded RF performance; arc-free $P_{RF} \sim 1.5$ MW, compared to $P_{RF} \sim 4$ MW in 2009
- Pattern of RF heating on divertor during H-mode follows magnetic field
- RF power flow to divertor is higher during large ELMs
- ~ 50% P_{RF} absorbed inside the LCFS during ELM-free RF+NBI H-modes
- Strong electron absorption associated with "Slow Wave" seen in "high-resolution" full-wave simulations
- 3-D AORSA full-wave simulations with boundary at limiter predict E_{RF} follows magnetic field near top and bottom of plasma


Backup Slides

NSTX HHFW Antenna Has Well Defined Spectrum, Ideal for Studying Phase Dependence of Heating

HHFW antenna extends toroidally 90°



• Phase between adjacent straps easily adjusted between $\Delta \phi = 0^{\circ}$ to $\Delta \phi = 180^{\circ}$

Some progress in heating low I_p (~300 kA) RF-only H-mode plasma, but only achieved f_{NI} ~ 0.6 due to low P_{RF} (~1.5 MW)

- Spherical torus needs fully non-inductive I_p ramp-up & sustainment
- \bullet Low I_p HHFW experiments in 2005 could not maintain P_{RF} during H-mode
- This year generated sustained RF H-mode with internal transport barrier (ITB)
 - Better plasma-antenna gap control than in 2005 (Reduced PCS latency)
 - V_{loop} 0 and dI_{OH}/dt 0, but need $P_{rf} \ge 3$ MW for fully non-inductive H-mode

