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Abstract

The multi-channel Far Infrared Tangential Interferometry/Polarimetry
(FIReTIP) system has been used to measure changes in the electron
density fluctuation spectrum for the Enhanced Pedestal H-mode (EPH-
mode) on the National Spherical Torus Experiment (NSTX). Data shows
dramatic density fluctuation suppression as the EPH-mode is
triggered, similar in nature to the turbulence reduction present at the
conventional L\H transition. Coherent fluctuations are observed by
FIReTIP during the EPH-mode with frequencies greater than 10 kHz.
Density fluctuation measurements from FIReTIP edge channels with
different tangency radii during the EPH-mode are compared with L-
mode and H-mode cases, and are presented together with a
discussion of a possible EPH-mode triggering mechanism based on
the gyro-center shift (GCS) theory.

*This work is supported by U.S. Department of Energy Grant Nos. DE-FG02-99ER54518
and DE-AC02-09CH11466.
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Enhance Pedestal H-mode (EP H-mode) on NSTX

0.5

| &W‘—JW _
0 e L ‘ | ' ‘
6 T ‘ T | T ‘ T T
4 N
2 L |
8 I ‘ | | | | | |
T ‘ | [ ‘ I
0 [ 141340 //
ol EPH k
0. |
0.0 0.1 0.2 0.3 0.4
Time [sec]

— EP H-mode
triggered by
natural ELM

— energy
confinement
Increases 50%

— transition after
large ELM, either
natural or
externally
triggered by 3D
flelds

[R. Maingi, et al., PRL,
105 135004, 2010]
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Profile changes before and after the EP H-mode transition
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FIReTIP measurement of n, fluctuations on NSTX

FIReTIP ) CH1: 32 cm

CH2: 57 cm

CH3: 85 cm

CH4:118 cm,
—~. CH5:132 cm
_/CH7:150 cm |

FIR interferometer

- wavelength :119 ym
- bandwidth : 4 MHz

- two edge channels
& one core channel
for EPH-mode

(Rt:85cm, 132 cm
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FIReTIP showed on,_ suppression on EPH-mode

(FIReTIP) n,
fluctuation spectrum

H-mode versus
EP H-mode

L\H Transition
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High-k measurement also showed fluctuation reduction

chan §, shot= 141340

iy M“‘

038 032 034 03% 038 032

chan 3, shat= 141340 chan 4, shot= 141340

chan 2, shot= 141340

chan 1, shot= 141340

f (kHz)

034 036 038
s)

-100

032 034 036 038
t(s)

EPH-mode transition
-30

» measured for Rt=143-144 cm
» most intensive Ch2 showed clear reduction at EPH transition

» frequency range is similar to FIReTIP measurement

both FIReTIP and High-k showed fluctuation reduction on EPH-
mode transition at few cm inner location than normal H-mode

transport barrier
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Characteristics of n=1 MHD

measured by FIReTIP
Rt=132 =

30 prvrvrrrr I]..T. v

4"l '@5& ()

there are 4 stages:

(1) early H-mode

(2) n=1 mode start

(3) EPH-mode by ELM
(4) H-mode by ELM

» n=1 mode frequency
decreases with toroidal
rotation reduction
In stage (2)

f(kHz)

» on EPH-mode start by
ELM, n=1 mode

N ' il frequency begins
0.20 025 030 0.35 0.40 0.20 025 030 0.35 040 to increase

t(sec) t(sec)

» there is always n=1 mode in stage (2) but behavior of n=1 mode is not
consist ant in stage (3) or (4)
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V,and E, profile changes on EPH-mode development
from CHERS
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» in stage (2), while n=1 mode develops, toroidal rotation decreases, and
there is additional change in Er for boundary

» by ELM, V, and E, profiles changed to have inside points of dip; stage (3)

» |In EPH- mode there are inflection points for E, and V, ( V’Er=0 ,VV:=0)

» at second ELM, EPH-mode transforms back to H- mode with inner
boundary than earlier H-mode.
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Theory of gyro-center shift (GCS)

» : neutral
/i ion trajectory

> X

JxB = ion momentuNss rate\due to collisi)z/n with neutrals
r. Z‘E ~1'VP KT th)
A, B eB n eB n

/ \ )

driving terms

3O _en

return current term
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« When ions collide with neutrals, they lose their momentum;
ex) charge exchange. y-components of ion velocity in above
picture (Vy, ,Vyn ) generate a current in x-component (radial
In tokamak) by JxB = momentum loss. vai IS 10N
diamagnetic drift and VVnn IS effective ion velocity comes from
the neutral density gradient calculated by;

right-side
reaction

Gvi§vnn(><)d<9 1 1 6n,

“ruo, — , L=0v, SIn6f +v, CosHY
ov,fn,(x)dg 2" " n, or

Vay =

 These two terms (VVp, ,VVn ) drive gyro-center

shift current (J %) and forms electric field as 5@ n
the source of return current. )

« The theory of gyro-center shift explains the .
origin of the radial electric field on the "N leftside

reaction

boundary of tokamaks. [Lee, POP 2006]
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Turbulence induced diffusion by GCS theory [Lee, PPCF 09']

A 1Ln(x) n{x+y

time | 7n(x)Ve,g =>IB

C Tn(X+4y Vng
k :ﬁ.t ﬂ
~ E
ann.u * D:Q ﬂ/t » D—2 ZkTe
-~/ 7/ B “ 7 eB
nAavn 1g
B ~ kT 5 0 ~ =
4 EA ~2n—2+ eh ~ e - Boltzmann relation, ¢, ~ Eﬁ )
€ KT, n, 2
» turbulence induced ion and electron diffusion : ngtVn
> turbulence induced charge diffusion : -4 Vp l

» ion and electron move toward boundary => diffusion _
» charge (p) moves toward core => dilution current => saturation by J¢¢°
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Reynolds number of ion-neutral friction

» ions and electrons move toward boundary => diffusion

Turbulence » charge (p) moves toward core => dilution current => saturation
condition
Joe :eniL(E_ 1 VR 4 KT, Vnn) inertia force\
A, B eB n eB n *2
\ / n.m.o /I’L- eB
) v Re=_"" I D*
1—Nn
| nmv._o* KT
o i _l/’neetra? viscosity force
y A A (saturation condition : J *° = DV p)

\

B
m; N, (Gi—nnn)ZUL

2
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yo,

Gauss’s law in slab geometry l VE = >
&g

B

V°E

m,n; (;_,n,)*v,
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Reynolds number for EPH-mode

) B

VE

mn, (o,_,n

I-Nn" N

)ZUJ_

U

If V2E ~ (0 Re can be smaller than Re* which determine turbulence

Re* = critical Reynolds number (2000~3000),

Re < Re* (laminar, H-mode)

V’E ~0

EI5 H-mode

10° vim®

0.536 sec

0.748 sec

possible scenario of EPH-mode transition

ELM — change of ion velocity profile

— change of Er profile

— making V’E ~0where inner part of
H-mode transport barrier

— Re < Re* (critical Reynolds number)

— turbulence suppression

— confinement increase
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Re for H-mode and EP H-mode transitions

0000 ——r—1—+—T—r— 71—
2 : 2 ) g : 4 L-mode (n=25%)
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..................... wed = 7000 - i R *n
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S . {5 %1 —-— thigh,n:high, n :high
T £ 5000 1
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Re = —V°E
7 mn(oin,) v,

» for normal H-mode,‘VZE‘ >~ (0 and n, determines Re profile

» for EPH-mode, V’E -0 and Re < Re*, and n, can be lower than

H-mode
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Analysis of EPH-mode based on GCS theory
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transport barrier for EPH-mode
transport barrier for early H-mode

» |ocation of EPH-mode transport barrier is close to V°E — 0 area
» transport barrier further inside of separatrix = lower neutral density

» lower neutral density - lower fueling & cooling - low n, & high T,
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Summary

» EP H-mode is triggered by ELM and shows 50% increase of
energy confinement on NSTX

» density fluctuation measurement by FIReTIP and high-k scattering
system showed reduction at EP H-mode transition

» FIReTIP data showed n=1 mode development as pre-stage of EPH-
mode transition.

» toroidal ion velocity and Er profiles of EP H-mode changes to
have V°E — 0 area inside of separatrix.

» Reynolds number of ion-neutral collision from gyro-center shift
theory is proportional to the second gradient of Er (Re o VZEr )

» |location of EPH-mode transport barrier is close to y2E . ( area

» possible mzechanism of EP H-mode transition :
ELM DV’E -0 5> Re < Re* 5 turbulence suppression

* Please e-mail to kclee@pppl.gov for reprint and further questions
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