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The Multi-Energy Soft-X-Ray Array is a Novel Compact Diagnostic Impurity Transport Modeling with STRAHL is Used to Determine the The ME-SXR Diagnostic and Analysis have been Successtully Implemented
that Provides 7 , n , and Impurity Profile Information with High Diffusive and Convective Transport Coefficients from X-ray Emission for High-Resolution Edge Impurity Transport Measurements in NSTX
Spatial Resolution (<1 ¢m) and Fast Time Response (> 10 kHz)
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