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Successful comparisons between theory &
experiment in conventional tokamaks

Make low-power MHD-quiescent plasmas so
beam ions are classical

Compute the fast-ion distribution function with the
TRANSP NUBEAM!' module.

Predict the FIDA spectra with the FIDASIM?2
synthetic diagnostic code.

Measure spectra with Czerny-Turner specirometers
& CCD cameras.

Use beam modulation to subtract the background.

Absolutely calibrate the optics.

Pankin, Comp. Phys. Commun. 159 (2004) 157 2Heidbrink, Comm. Comp. Phys. 10 (2011) 716
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Agreement to within 20-30% in DIlI-D & ASDEX-U

——simulation R=180 cm
——measurement

E<20 keV

100 E<20 keV
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FIG. 3. (Color online) Comparison of the measured spectra and simulated
spectra. There are no detectable instabilities at the tinie380 ms) of com-
parison (Pg=2.4 MW, B;=20T, |,=1.0 MA, and single-null configur-
tion). Error bars associated with random errors are less than the size of
symbols (not showr).

Y. Luo et al, Phys. Plasmas
14 (2007) 112503.
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Figure 14. Comparison of measured FIDA spectra (black) to FIDASIM results during on-axis
NBI heating at two different radial positions (1.707 ma) and 1.924 m b)). In red, the simulated
FIDA components are shown. The sum of simulated beam emission, FIDA and halo components
is shown in blue. The simulation results have been scaled up by 30%.

B. Geiger et al, Plasma Phys.
Cont. Fusion 53 (2011) 065010
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Do FIDA spectra agree in a spherical tokamak?

If YES,

e Confirm validity of measurement & of TRANSP modeling
* Verify distinctive features of distribution function in the ST
If NO

* Problem with instrument or calibration, and/or

e TRANSP modeling misses important physics

Challenges

e Nearly impossible to make a beam-heated discharge
without instabilities in NSTX.

e We used one 65 kV source at 50% duty cycle but the
discharges still had CAE (or GAE) instabilities

NSTX 53¢ APS-DPP Conference , Salt Lake City, Utah  (W. Heidbrink et al)



A recent paper reviews the FIDA spectroscopy technique

* Photons emitted by re-neutralizing fast ions have Doppler shifted
wavelengths

— Key is distinguishing fast-ion features from the dominant cold D, emission

« Active views intersect neutral beam
« Passive views miss the neutral beam - used for background subtraction

1015:' UL LA DL B | L T T
Photon
BEAM
Radlates Fast neutral € EMISSION
] ) < 1014 THERMAL | .
~_ IV S f (HALO) | 3
Injected ~v £ |
Neutral <
A\ Plasma Collision S
[UN]
Charge S | \
Fast 9 Z 103F N -
on Exchange = [ VISIBLE g T ]
S [ BREMSSTRAHLUNG | ]
[ | FIDA
1012 P | PR B R R | “. PR | S ‘l PRI B | I

650 652 654 656 658 660 662

WAVELENGTH (nm)
*Heidbrink, Rev. Sci. Instrum. 81 (2010) 10D727
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NSTX has both active and passive vertical views

Top view
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The NSTX s-FIDA instrument partially blocks
the cold D_ line to avoid camera saturation

—_ *“Holospec” fransmission grating
spectrometer disperses light
0 Spectiomerer, ¢ OD2 neutral density filter in focal
plane partially blocks center line
Lens
T ] Filter I;:Boecakne\demlssmn also partially
Lens .
eSpectral resolution ~0.23 nm
CCD

Lens | | camera «Camera data acquired in 10 ms
L Grating ] bins—chopper wheel blocks light

for ~1.8 ms during readout

*In-vessel absolute calibration
uses “Labsphere” source

*Podesta, Rev. Sci. Instrum. 79 (2008) 10E521
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Variety of plasma conditions tested
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Goal: Make MHD-
quiescent discharges to
investigate the red-blue
FIDA spectra variation

= 65 keV to minimize MHD
= No TAE, but some GAE
* N, variations change NB
deposition profile

* |, and By variations
change the orbits and field-
line pitch
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The neutron rate agrees well with TRANSP

NEUTRON RATE (1013/s)

15 T T T
- #132668 Analysis |

Time
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........ 1

........
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TIME (s)

eEven at this low power level,
CAE activity occurs at every
beam blip

*Shot 128742 is a similar
discharge® from 2008

Frequency (kHz)

*Neutron rate disagrees with
TRANSP when Source A injects
at full voltage but agrees with
TRANSP during the low-power
phase.

*The emission is virtually all
(93%) beam-plasma - good
proxy for total # of fast ions

(b) w/o RF (shot 128742)
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*Liu, Plasma Phys. Cont. Fusion 52 (2010) 025006
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Raw Data show FIDA feature

ACTIVE 132668 PASSIVE
10000} R=144 cm { 10000 1 sCompare “beam-on” and
1000 | Beam On § ;o0 , “beam-off” spectra from
100 M\W h Beam O 100 {\]M’\‘i adjaceni fime bins
*FIDA feature evident from
10000} R=120 cm { 10000} 1 magnetic axis to outer edge

1000

100

on active channels

eSpectra include impurity

lines
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Calibrated Spectra have Appreciable Background

“Beam Off” Spectra (#132668)

— — * White plate and in-vessel
- R=144/cm . - R=120Icm { source used to calibrate data

*Visible bremsstrahlung

| ‘ | M_,\J\ calculated from plasma
[ﬂ " | d M i parameters inside last-closed

flux surface

*Background spectra should

 R=106 fm i | R 87|c be > visible bremsstrahlung

ML

VB/3 |

45 650 655 660 665 670 645 650 655 660 665 670
Wavelength (nm) Wavelength (nm)

1012 ph/cm2-s-nm
o - N w 5 O = N W b

N
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Background subtraction works better for blue-
shifted spectra

R=116 cm

#132668

8 % Beam Modulation
¢ Reference View

FIDASIM/12y © _ -

*Net spectra should go to zero
at large Doppler shifts

*Should get same spectra

c from beam modulation
< Reference Modulation (“beam on - beam off”) &
T 650 651 652 653 654 Teference view o
S Wavelength (nm) ("active view - passive view)
<
Py *Beam modulation spectra for
S ,E reference view should be flat
BT and ~ zero.
4 *Blue-shifted spectra meet
6500 6595 6600 6605 6610 6615 6620 criteriaforthis case
Wavelength (nm) .
* Red-shifted spectra do not
NSTX 531 APS-DPP Conference , Salt Lake City, Utah (W. Heidbrink et al) 12



Background offsets are caused by scattering of
the bright central line

* Measure modulated spectra
(“beam on - beam off”) in
three bands: Large blue shift
(above injection energy), cold
D, line’, Large red shift

e Compile database for 11
times in 9 shots

Modulation Offset

Strong correlations for all
channels for both red and blue

sides of specira

*Red offset is larger in
outermost channels

0 5000
Cold Dy Line

*includes some beam emission

@ NSTX 53¢ APS-DPP Conference , Salt Lake City, Utah  (W. Heidbrink et al) 13



Offsets are not caused by passive FIDA light

*DIII-D,!' NSTX,' and ASDEX-U2 data show that charge-exchange with
edge nevutrals can produce appreciable FIDA light

In DIII-D, certain beams produce prompt losses that intersect a FIDA
sightline, producing passive FIDA light.!
* Prompt loss orbits from Source B do not intersect the FIDA sightlines in

the present experiment.

THeidbrink, Plasma Phys. Cont. Fusion 53 (2011) 085007
2Geiger, Plasma Phys. Cont. Fusion 53 (2011) 065010
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The spectral shape agrees well with FIDASIM
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*Subtract offsets from
modulation specira

*Normalize theory to
experiment

e Calculate reduced chi-
squared for the red-shifted and

blue-shifted sides separately

e Agreement is good for
virtually all channels

NSTX

534 APS-DPP Conference , Salt Lake City, Utah

(W. Heidbrink et al)

15



The spatial profile and absolute values disagree
with FIDASIM

*Integrate spectra between”
E,=21-68 keV

*Error estimate from greater of
random error & background
offset

*Theory is much larger than
experiment

* Experimental profile shape is
broader than theory

*Shot #128742 from 2008 gives

90 100 11 12 similar resulis

Major Radius (cm)

*E, is the minimum energy of a neutral that
produces the observed Doppler shift

NSTX 531 APS-DPP Conference , Salt Lake City, Utah  (W. Heidbrink et al)



A similar DIlI-D shot has a much smaller

discrepancy
E *I R201cm —— *Vertical view
5 #146088 : .
E 2 fhcam OFF *Only blue-shifted data
S I P WAL  Steady injection of 1.3 MW by
s ° one 60 keV source

648 649 650 651 652 653 654
Wavelength (nm) *Negligible MHD

 Similar analysis procedure

410"

3+10™ *Spectral shape in good
: agreement

2.10"2F .
; * Magnitude off by factor of

FIDASIM/2 two

photons/cm2-s

1+10"
- * Profile shape in poor
agreement

180 190 200 210
Major radius (cm)

NSTX 53¢ APS-DPP Conference , Salt Lake City, Utah  (W. Heidbrink et al) 17



Many quantities are similar between NSTX & DIlI-D

Quantity NSTX #132668 DIlI-D #146088 Comment
Neutrons 7e12n/s 4e13 n/s good agreement
FIDA (theory) 4el2 7e12 (ph/cm2-s-nm)
FIDA (exp.) 2ell 3el2 “

BES (theory) 4e15 3el5 ‘

V.Brems. (th) 1e12 5e12 “

Baseline (ex) 1el2 1e13 “

Inj. neutrals 3e8 5e8 (full energy, cm-3)
Fast ions 7e11 2e12 (central, cm-3)

*But experimental FIDA signal is an order of magnitude lower on NSTX

NSTX 53¢ APS-DPP Conference , Salt Lake City, Utah  (W. Heidbrink et al)



Peak intensity scales like theory
for both red & blue spectra

-y
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1.0C

THEORY Intensity (a.u.)

e Peak of spatial profile fitted
for all 12 shots in the dedicated
experiment

e Correlation coefficient for
experiment vs. theory isr ~0.9
for both red & blue spectra

*Variation in n_, most important
factor (more than B; or | )

e No correlation observed
between experimental and
theoretical red:blue ratio

@ NSTX
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Original motivation was to observe
predicted differences in red/blue features

TOKAMAK: B ST: B B
B
Lens Lens
[ — Z [ —
Z T T
. £ 4
B 4‘% ions B Mostly CO beam ions
CTR
=5
Spectra similarity in tokamaks helped by : Spherical tokamak: N
= Smaller blue & red shift due to smaller B field tilt " Expectblue & red spectra © B
= Detection of sizable CTR going beam-ion population peaks not to coincide '
Gyro orbit not /!
drawn to scale:
s~ 5-10cm

@ NSTX 53¢ APS-DPP Conference , Salt Lake City, Utah  (W. Heidbrink et al) 20



Theory predicts different red & blue spectra

132669A03 Spectra for Ch.8 132669A03 spectra profiles
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N 1 | 9]
2 1510 | | - v 6.0410"|
=) I : o
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0 | L | L | 0 | | l l T
650 652 654 656 658 660 662 80 90 100 110 120 130 140 150
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* Peak of red profile shifted inwards by 5-10cm. Blue spectra stronger outwards

e PITCH of magnetic field lines alters detected Doppler shift > stronger effect

e Large gyro radii (~5-10cm) are a weaker effect

534 APS-DPP Conference , Salt Lake City, Utah (W. Heidbrink et al) 21
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Observations and Implications

*Neutron rate agrees - fast-ion density not an order of magnitude too low;
TRANSP simulation OK

*FIDASIM validated in conventional tokamaks - code probably OK

eSpectral shape & parametric dependence agree with theory - really
measuring FIDA light

*Visible bremsstrahlung theory ~ experiment but spectra have non-
negligible quantities of scattered light > experimental calibration low by >3

*FIDA magnitude an order of magnitude too low - experimental calibration
low by >10

e Experimental profile is broader than theory = possibly some anomalous
fast-ion transport

* Substantial uncertainties in background subtraction & possible anomalous
transport > cannot observe expected difference in red:blue spectra

*Need larger FIDA signals (successful DIlII-D and AUG comparisons have
order of magnitude larger signals) - cannot achieve this in NSTX w/o MHD!

NSTX 53¢ APS-DPP Conference , Salt Lake City, Utah  (W. Heidbrink et al) 22



Sign-up sheet
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FIDA code checks: red vs. blue
spectra variations tested in simulations

 Expected flip of red and blue spectra properties
seen when code was modified such that

1. V/ V sign was flipped

2. Lens moved from machine top to bottom

* Sefting B, = 0 moves the red and blue spectra
peaks closer

e Eliminating the gyroradius shifts the peaks by
~one gyroradius in the expected direction

NSTX 53¢ APS-DPP Conference , Salt Lake City, Utah  (W. Heidbrink et al)



Beam Diffusion Broadens Predicted
Profile

10.0 AR Basassass; Bamasanss e Bamsassas Basssans

* Measured profile is broader than

«— Experiment*16/Theory
predicted

e Use spatially uniform beam-ion
diffusion of 1.0 and 2.0 m2/s in
e 31 TRANSP simulations

:::: 3 *Predicted neutron rate is 87% and
1 77% of classical (Dg=0) value

*Predicted FIDASIM profile
broadens but still doesn’t match
0.1 Leernens T Leviaiiann, Levassian, Levisiiies evrieeines Lo experimeni
80 90 100 110 120 130 140
Major Radius (cm)

Ratios

Theory (2.0 m2/s)/
Classical
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How does a FIDA measurement relate to the
fast-ion distribution function?

D3D example
WEIGHT FUNCTION W(E,p) CONVOLUTION W=F
10 @ 10 y v m
ey T (- o . R
I DEP) | _ « Define a “weight function”
- /\/ / ~'—;"—'J"' . o o
S ol // o “egp | o - in velocity space. It is larger
e for larger pitch =2 larger
05+ 4 4 05 - °
- NPA signal
-1.0 ) L ) -1.0 L )
e Similar to an “instrument
1.0 1.0 . °
function ” in spectroscopy
0.5 0.5
S ool ool * Only one component of
. the velocity causes the
0.5 05 F .
Doppler shift
1 20 :10 160 ‘80 100 -].020 4(‘) 6(‘) 8&) 100
ENERGY (keV) ENERGY (keV)
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Background subtraction often works well

Blue spectra example

Ch.8

! «— 'mpurities

g
o
LA A L

—
o
L L

RADIANCE (1012 photons/cm2-s-nm)

T Ty

Passive View—Beam Off Active View—Beam Off |

#132668 R=117 cm

Actlve View--Beam On -
& Passive View—-Beam On 34

Net Active View

-

Net Passive View

—_.——_——_—-———-——

| | 1

6505 651.0

S A

6515 6520 6525 6530
Wavelength (nm)
Larger Blue Shift

e The desired FIDA signal is
excited by a heating beam

 The “Net”signalis :

(Beam On) - (Beam Off)
e Prominent impurity lines
nicely “disappear”

 “Net Active ” has the
expected shape

» Expect “Net Passive "to
be zero - itis small & flat in
this case

@ NSTX
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Increased pitch angle scattering
modifies the predicted red spectra
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= fys was smeared in pitch angle
uniformly for each energy, and all
spatial locations

= The beam particle census was
maintained in the manipulated fy,

Fast ion distribution

Fast ion distribution

NSTX
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Increased pitch angle scattering
modifies the predicted blue spectra

TRANSP F,_,,
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spectra.
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» The profile peak values increase
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= fys was smeared in pitch angle
uniformly for each energy, and all
spatial locations

= The beam particle census was
maintained in the manipulated fy,

Fast ion distribution

Fast ion distribution
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