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Understanding the pedestal structure is crucial for
performance prediction of fusion devices

'Q Pedestal is an edge transport barrier associated with high-
confinement regime (H-mode)

& Predictive models indicate that the pedestal height plays a crucial role

in fUSiOﬂ performance Predicted fusion power vs pedestal temperature
at fixed pedestal density
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Peeling ballooning theory is the leading model for explaining the
the edge localized modes (ELM) cycle
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Connor, PoP (1998)
Wilson, PoP (2002)
Snyder PoP (2002)

¢ Itis hypothesized that ELMs are triggered when the plasma edge
(current and/or pressure gradient) crosses the stability boundary

Continuing efforts for an experimental characterization of the
pedestal dynamics during the inter-ELM phase
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Outline

'@ Pedestal structure characterization in ELMy H-modes

— Pedestal pressure height builds up and at times saturates late in the ELM
cycle

— Pedestal width increases during the inter-ELM phase
— Peak pressure gradient is clamped early in the ELM cycle

@ Maximizing the pedestal height and width

€ Role of microturbulence during the inter-ELM phase

€ Summary and future work
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Dedicated experiments to vary the pedestal pressure height and
width through |, scans were performed on NSTX

¢ Constant injected power (Pngi) and magnetic field (BT)
¢ Lower single null slightly downward and fixed high triangularity shaping.
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¢ Large drop (up to 15%) of stored energy (Wmnd) after each ELM crash
- Pedestal stored energy ~ 25% - 40% of Wmnd

¢ Discharges operated near stability boundary
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Radial profiles of density, temperature and pressure are composite
of times between multiple fraction of ELMs
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Observe increase of the pedestal pressure height prior
to onset of ELM
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Pedestal pressure height builds nearly
continuous during the inter-ELM phase

¢ Pedestal height
increases by a

factor < 3 before
the ELM crash

¢ Pedestal height
saturates prior to
ELM crash at low
and medium Ip
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Pedestal pressure height builds nearly
continuous during the inter-ELM phase

¢ Pedestal height
increases by a
factor < 3 before
the ELM crash
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Pedestal width progressively increases during ELM cycle but
the peak pressure gradient remains unchanged

Pedestal width evolution Maximum pressure gradient
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¢ Pedestal width increases during the inter-ELM phase independently of I,
¢ Peak pressure gradient saturates early in the ELM cycle:
— Peak pressure increases with |p

7~
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Pedestal dynamic during the inter-ELM phase is indicative of the
possible current and pressure gradient evolution in the stability diagram
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¢ ELMs are triggered when the plasma edge (current and pressure
gradient) crosses the stability boundary
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Outline

@ Pedestal structure characterization in ELMy H-modes

¢ Maximizing the pedestal height and width
— Plasma shaping provides a knob for increasing the pedestal height

— lithium wall coating modifies the pedestal structure, allowing access to
larger pedestal widths and higher pedestal pressure

« Evolution of the pedestal structure is consistent with NSTX discharges
being close to the kink/peeling stability boundary

€ Role of microturbulence during the inter-ELM phase

€ Summary and future work
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Pedestal pressure height increases with shaping
(triangularity o)

Pedestal height during
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Increasing shaping leads to stability limits at higher P’peq
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ELMy regimes transition to ELM-free regimes with the application of
lithium on the divertor to access larger pedestal pressure and width

Total pressure proﬁles Pedestal height vs width
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¢ ELM-free regimes exhibit a pedestal height and width larger than in
ELMy cases

— Application of lithium clearly modifies the edge pressure
@ Inward shift of the peak pressure gradient
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Stability diagram with and without lithium:
Lithium cases are farther away from the kink/peeling boundary

pedestal current ( jpeq)

pressure gradient (p 'ped)
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Stability diagram with and without lithium:
Lithium cases are farther away from the kink/peeling boundary

pedestal current ( jpeq)

pressure gradient (p ’rwd)

Consistent with NSTX close to the kink/peeling stability boundary

Lithium coatings are a useful tool for shifting peak pressure gradient inward and
stabilizing kink/peeling modes.
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Stability diagram with and without lithium:
Lithium cases are farther away from the kink/peeling boundary
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Consistent with NSTX close to the kink/peeling stability boundary

Lithium coatings are a useful tool for shifting peak pressure gradient inward and
stabilizing kink/peeling modes.
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Outline

@ Pedestal structure characterization during the inter-ELM phase

@ Maximizing the pedestal height and width

€ Role of microturbulence during the inter-ELM phase

If the pressure gradient is limited by kinetic ballooning modes (KBM), it is
expected that the pedestal width is proportional to the poloidal 3

Correlation reflectometry probes radial correlation lengths
BES probes the poloidal correlation lengths and advection direction

Combination of both BES and reflectometer (< 50kHz) provides
characterization of the microturbulence at play during the inter-ELM phase

@ Summary and future work

D NSTX
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Measured pedestal pressure width scales with vVf

0.15-_
© Good description of the width
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Measured pedestal pressure width scales with vVf

0.157

© Good description of the width
scaling over multiple machines
(DD, CMOD, JET, MAST)

Groebner, NF, (2009)
Kirk, PPCF, (2009)
Beurkens, PoP, (2011)
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< Kinetic ballooning instability is the leading candidate for explaining the width
scaling
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Role of the edge density fluctuations on setting the
pedestal structure during the inter-ELM phase

¢ Pedestal gradient has been predicted to be constrained by the

onset of kinetic ballooning mode (KBM)* “Snyder PoP 9 (2002)
— Recent DIIID work has shown observations of modes localized in the
pedestal region with features similar to KBM Yan PRL 107 (2011)
— KBM characterized by:
© kupi<1

* modes have radial scales of the order few cm in the pedestal region of NSTX
 fast rising growth rate increasing with electron £
e propagation in the ion diamagnetic direction.

€ NSTX: We look for evidence of pedestal-localized microinstabilities,
and their correlation with the ELM cycle

— Use both reflectometry and BES

— Because it's hard to conclusively identify KBM, we characterize our instabilities in
terms of radial scale, wave number, and propagation direction
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Turbulent fluctuations during the inter-ELM dynamics
determined using the correlation reflectometry (UCLA)

Cutoff layers in plasma

hardware components Compute Determine
correlation function correlation lengths
n
T OF 1 9
T Source ‘<5152>‘ )\Obs
Source ‘S ‘2> <‘S ’2> r
)\turb W, 1 2
T SQ A
é Ref
or

Modeling Full wave Simulation

¢ Compare the correlation length measurements with 2D full wave
simulations to remove potential instrument function )\};W’? £ )\gbs

— density fluctuation level, equilibrium profiles, and turbulent correlation lengths.
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Radial density correlation lengths at the pedestal top and
steep gradient region

¢ The density fluctuations are
measured using a 16-channel

1-]Density Profile 20 % -40% of ELM cycle O-mode reflectometer

i with cutoff densities

. Crocker, PPCF (2011)
0.8-
] % "~ Pedestal top
L h
S
&
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Correlation function at the pedestal top and steep gradient
during the inter-ELM phase
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g i
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@ Assuming an exponential decay of the edge fluctuations

gradient

¥ Pedestal top correlation length is larger than that of the region of steep density
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2D full wave modeling (FWR2D*) provides correspondence between

observed quantities and turbulent parameters

1= *Valeo, PPCF (2002)
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2D full wave simulation of correlation function inside
pedestal region reproduces measurements

T
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0.8_ g‘: . *
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0.1 W Simulation®® = 1% and A7 =1.3 cm

O e T e |

Observed correlation length corresponds to an average eddy size of ~ 1.3 cm with
fluctuation level in the vicinity of 1% in the gradient region.
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Radial correlation length evolution depends on location
inside pedestal region

805 Correlation length evolution

during inter-ELM phase
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BES yields measurements of the poloidal correlation
the top of the density pedestal

TSmith, RSI (2010) \%
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BES provides measurements of the poloidal correlation length and

poloidal velocity

BES inter—ELM poloidal correlation lengths Inter—ELM velocities
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& Modest change in poloidal correlation length during the inter-ELM phase
— Group velocity corrected for ExB indicates propagation in ion diamagnetic direction
— Poloidal correlation length corresponds to toroidal mode number (rke/q) n =2 -3

D NSTX
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Using both BES and correlation reflectometry, the inter-ELM spatial
structure of fluctuations exhibit ion-scale microturbulence

& Strong anisotropy of the turbulence is observed during the inter-ELM phase

@ Turbulence data suggests microturbulence with 0.2 <k, p; <0.7 propagating in ion

diamagnetic direction

. BES inter—ELM poloidal correlation lengths 80-: Radial Correlation |ength evolution
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= 10 2407 4
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Given turbulence measurements during the inter-ELM
phase, what are the theoretical implications?

© Based on Jenko’s ITG stability criteria*, R/LTi = 15 > 3 x (R/LT1i_cit)
over the pedestal top throughout the ELM cycle +Jonko PoP (2001)
— |ITG could be unstable

¢ KBM could also be a key player due to the scales involved
— MHD a = 4.4 and remains constant during inter-ELM phase, but a.: is not yet

calculated. (v 1/2 ,
T T(2m)? \2r2R,) HOMP

©/

At present we cannot distinguish between ITG and KBM

Preliminary transport calculations (SOLPS and XGCO0) show ion heat
diffusivity is within neoclassical estimates in pedestal region
— E x B must still be important

¢ So, presumably electron transport can be affected by ion scale
turbulence which contributes to pedestal structure

©
&/

Detailed gyrokinetic calculations at the
pedestal top are needed and being pursued.
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Summary

© Pedestal parameters are qualitatively consistent with kink/peeling model of the
ELM cycle

— Progressive expansion of the pedestal structure during the inter-ELM phase
leading at times to saturation.

— Lithium induced ELM-free regimes exhibit larger than ELMy discharges pedestals
because edge boundary moves to a higher stability point

© During the inter-ELM phase, the turbulence diagnostics reveal:
— 0.2 =<k, pj =0.7 and propagation in ion diamagnetic direction suggesting

microturbulence of the type ITG/TEM/KBM are present at the pedestal top during the
inter-ELM phase

— Strong anisotropy in microturbulence (Ae>Ar)
— Due to lack of high-k measurements, we cannot rule out electron-scale turbulence
¢ Discussion and ongoing work:

— Perform simulations of turbulence using XGC1 to compare with experimental
results and determine effects on the pedestal structure.

— Using gyrokinetic codes identify modes present at the pedestal top.
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Backup
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ITG drives peaks at the pedestal top and R/L is larger than R/Lyi_crit

ITG drive during inter-ELM phase Critical ITG Gradient
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¢ Jenko’s approximation suggests ITG could be unstable in the
pedestal top.
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Preliminary:ion heat diffusivity comparison: SOLPS
and XGCO0

[on heat diffusivity
SOLPS and XGCO
3 30%-50%  80%—99%

b

¥ Neoclassical ion diffusivity remains unchanged during the inter-ELM phase
In the pedestal region

2 In the pedestal region SOLPS show larger than neoclassical ion diffusivity
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2D SOLPS modeling shows modest variations at the pedestal
top of the transport parameters

— 30-50%
— 80-99% 400

Extrapolated data

J. Canik
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ELM-free pedestal structure feature persists through high
performance discharges (i.e.,strong shaping - high triangularity)
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Pedestal structure continues to widen during high lithium deposition in high
triangularity discharges at comparable stored energy.

EE

BE
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CHERS poloidal flow are similar in magnitude with

BES flow estimates
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Reflectometry measurements are beyond the
instrument resolution

* 20% — 40%
* 30% -50%
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NSTX has the unique capability to suppress ELMs

using lithium coating on the divertor

Divertor D, Emission [arbitrary units]
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¢ Lithium coating on the bottom divertor modifies the edge stability boundary
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