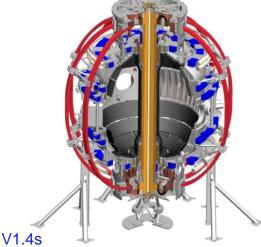


Supported by

Overview of Results and Analysis from the National Spherical Torus Experiment

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehiah U **Nova Photonics** ORNL PPPL Princeton U Purdue U SNL Think Tank, Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Marvland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U** Wisconsin X Science LLC

S. A. Sabbagh


Columbia University

for the NSTX-U Research Team

54th Meeting of the APS Division of Plasma Physics

October 30th, 2012

Providence, Rhode Island

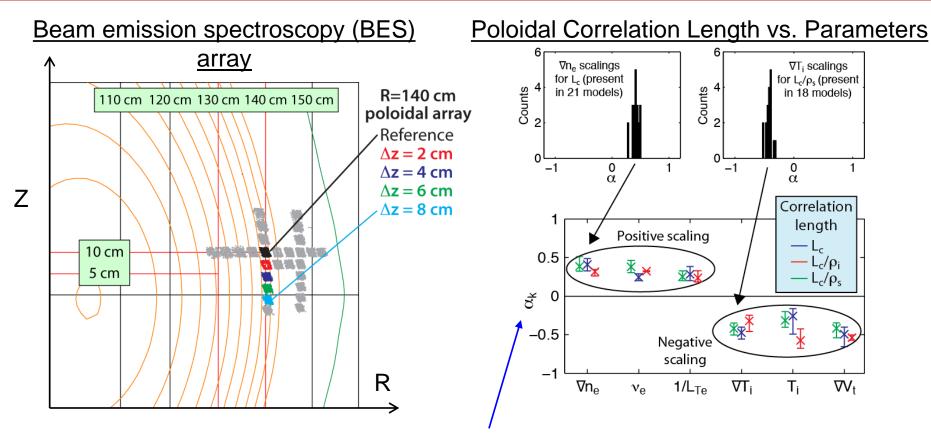
Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA, Frascati CEA. Cadarache **IPP**, Jülich **IPP, Garching** ASCR, Czech Rep

Office of

Science


NSTX research targets predictive physics understanding needed for fusion energy development facilities

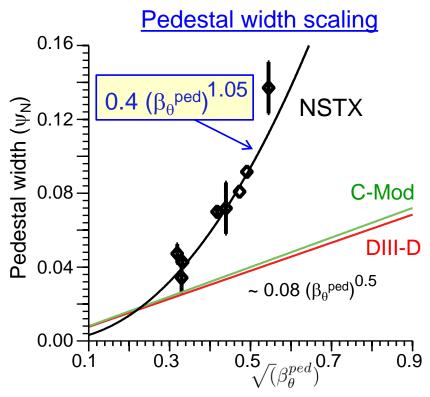
Enable devices: ST-FNSF, ST-Pilot/DEMO, ITER


Leveraging unique ST plasmas provides new understanding for tokamaks, challenges theory

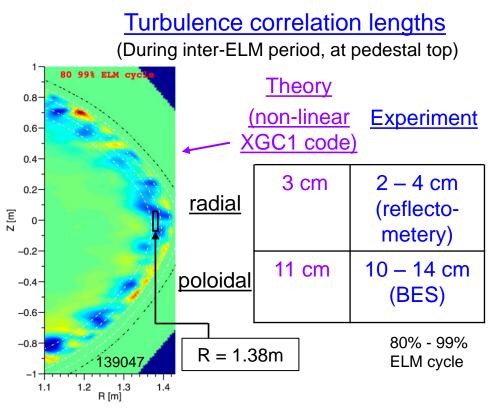
<u>Outline</u>

- Develop key physics understanding to be tested in unexplored, hotter ST plasmas
 - Study high beta plasma transport and stability at reduced collisionality, for extended pulse
 - Prototype methods to mitigate very high heat/particle flux
 - Move toward fully non-inductive operation

BES measured low-*k* turbulence in ELM-free H-mode pedestal steep gradient region is most consistent with TEMs



- Measurements during MHD quiet periods, in steep gradient region
 - **a** $k_{\theta} \approx 0.2-0.4 \text{ cm}^{-1}$ and $k_{\theta}\rho_i \approx 0.2$
- Large poloidal correlation lengths
 - $\Box \quad L_c \approx 10 \ \rho_i$

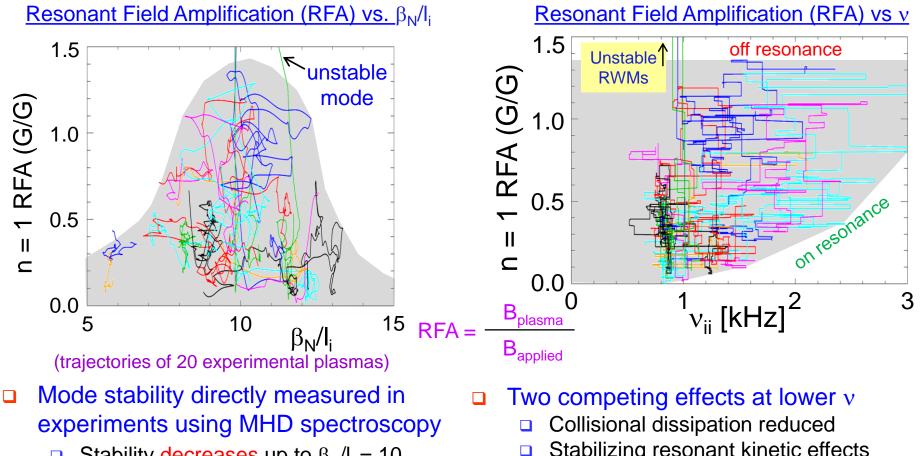

- **D** Multivariate linear scaling coefficients α_k
 - □ Fitting results are robust
 - Scalings are most consistent with Trapped Electron Modes

Smith YI3.04 (Invited – Friday)

Pedestal width scaling differs from other devices; turbulence correlation measurements consistent with theory

- Pedestal width scaling β_{θ}^{α} applies to multiple machines
- In NSTX, observed ped. width is larger
 - **Data indicates stronger scaling:** β_{θ} vs. $\beta_{\theta}^{0.5}$

- Measured correlation lengths at pedestal top are consistent with theory
 - spatial structure exhibits ion-scale microturbulence ($k_{\perp}\rho_i \sim 0.2 0.7$)
 - Compatible with ITG modes and/or KBM


Diallo PP8.010 (We)

Investigations underway to understand positive aspects of lithium wall coating; plasmas reach kink/peeling limit

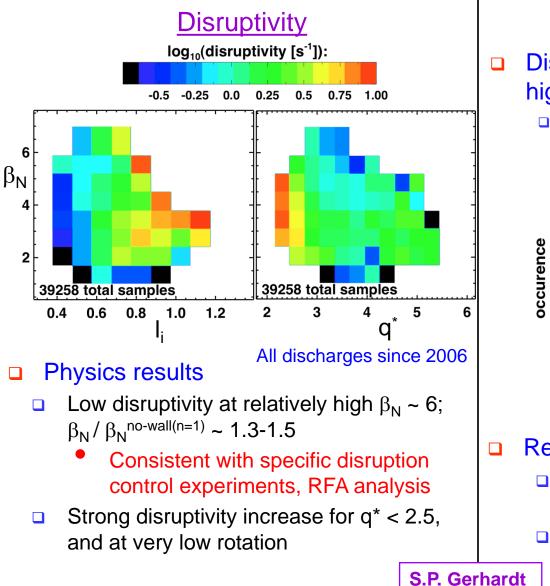
Norm. surface avg. current 1.0 Bootstrap current profile Energy confinement improves, ELMs 0.8 stabilize - with no core Li accumulation 0.6 XGC0 model Partially due to high neoclassical particle 0.4 diffusivity 0.2 10.00 Darticle diffusivity (m²/s) Sauter mode Lithium 0.0 0.5 0.6 0.7 0.8 0.9 1.0 Ψ_{N} 1.00 n=1-15, $(\gamma/\omega_{\star}/2)$ contours 2.0 Normalized current density Carbon Unstable NSTX 0.10 >0.3 No Lithium NEO (solid) 1.5 NCLASS (dash) **ELMy** 130725 0.01 r/a 1.0 0.0 0.2 0.4 0.6 0.8 1.0 Stable Scotti GI2.05 (Invited – Tu 11:30 AM) Pedestal with XGCO-Bootstrap 0.5 Surface analysis experiments show oxide 10 12 6 8 coverage of Li plasma facing components Normalized pressure gradient (α) (PFCs) expected in 20 – 200s New bootstrap current calculation Short reaction times motivate flowing Li PFCs (XGC0 code) agrees with profile Oxygen plays important role in D retention reaching kink/peeling limit before ELM Jaworski PP8.032 (We) Chang PO7.07 (We) Maingi PP8.007 (We) Capece GO6.08 (Tu)

🕖 NSTX-U 54th APS DPP Meeting: GO6.01 Overview of Results and Analysis from NSTX (S.A. Sabbagh, for the NSTX Team) Oct 30th, 2012

Experiments measuring global stability further support kinetic RWM stability theory, provide guidance for NSTX-U

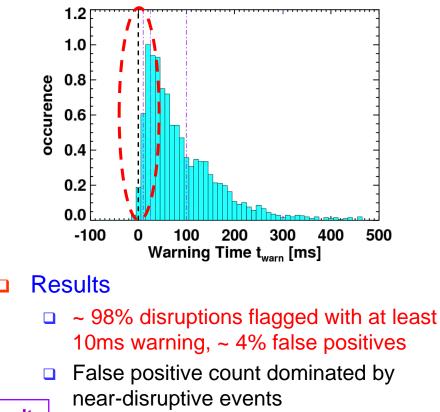
- Stability decreases up to $\beta_N/l_i = 10$, increases at higher β_N/l_i
- Consistent with kinetic resonance stabilization

Berkery GO6.09 (Tu)

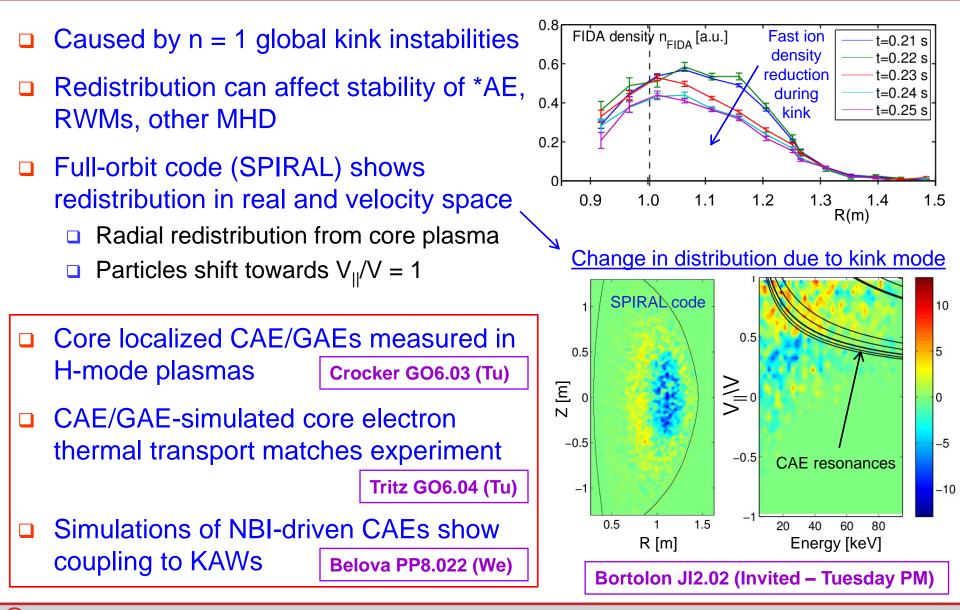

Bialek PP8.013 (We)

 Stabilizing resonant kinetic effects enhanced (contrasts early theory)

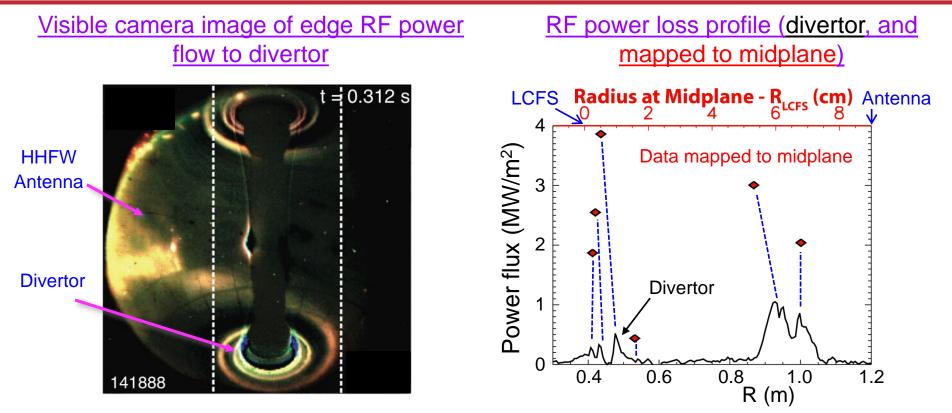
Expectations at lower v


 More stabilization near ω_φ resonances; almost no effect off-resonance

Disruptivity studies and warning analysis of NSTX database are being conducted for disruption avoidance in NSTX-U



Warning Algorithms

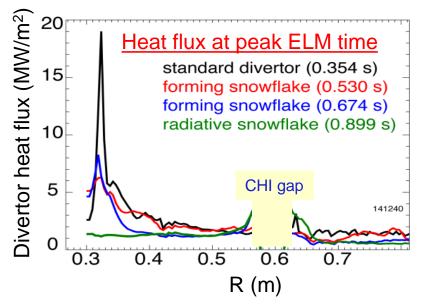

- Disruption warning algorithm shows high probability of success
 - Based on combinations of single threshold based tests

Fast ion redistribution associated with low frequency MHD measured by fast ion D_{α} (FIDA) diagnostic

Significant HHFW power deposited in the SOL in front of the antenna flows to divertor region

RF power couples to field lines across entire scrape-off layer (SOL) width, not just to field lines connected to antenna components

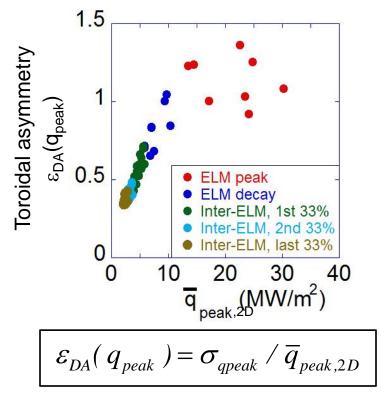
Midplane mapping shows strong losses close to antenna and separatrix


Shows importance of quantitatively understanding RF power coupling to the SOL for prediction to future devices

R. Perkins, et al., PRL 109 (2012) 045001

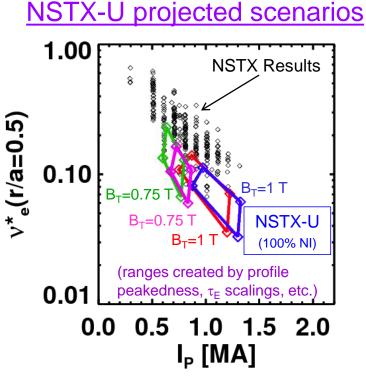
Perkins GO6.012 (Tu)

Radiative snowflake divertor greatly reduces heat flux during ELMs; toroidal asymmetry of 2D heat flux studied

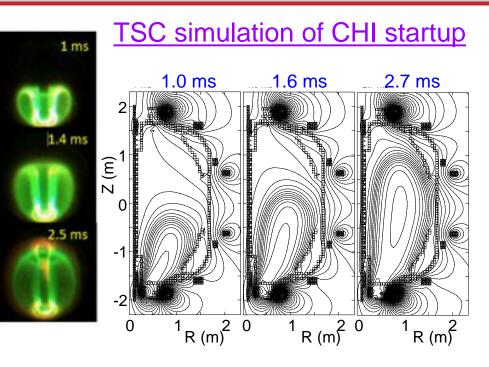

Snowflake divertor in NSTX

- Divertor heat flux significantly reduced both during and between ELMs
 - during ELMs: 19 to ~ 1.5 MW/m²
 - □ steady-state: 5-7 to ~ 1 MW/m²
- Achieved by a synergistic combination of detachment + radiative snowflake

Soukhanovskii PP8.027 (We) | Meier PP8.028 (We)


Toroidal asymmetry of 2D heat flux

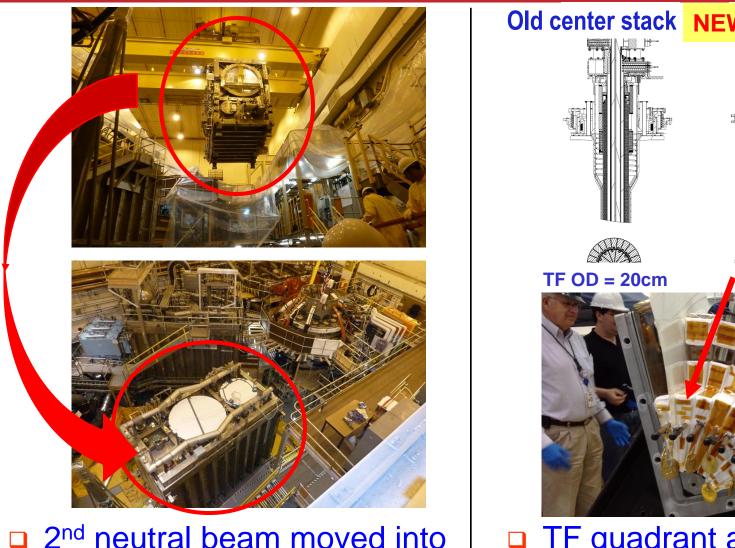
- 2D fast IR camera measurement (6.3kHz)
- Toroidal asymmetry becomes largest at the peak heat flux for usual Type-I ELMs Ahn GO6.06 (Tu)


NSTX-U 54th APS DPP Meeting: GO6.01 Overview of Results and Analysis from NSTX (S.A. Sabbagh, for the NSTX Team) Oct 30th, 2012 10

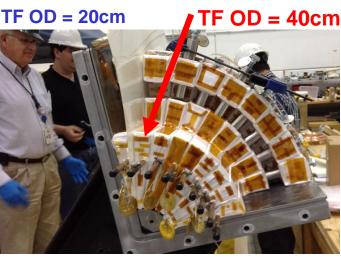
100% non-inductive scenarios projected over wide range of NSTX-U operation; coaxial helicity injection (CHI) scales well

□ In NSTX

- Sustained non-inductive fraction of 65% with NBI at I_P = 0.7 MA
- 70 100% non-inductive reached using HHFW current drive (I_P = 0.3 MA)


- In NSTX, I_p ramp to 1 MA requires 35% less inductive flux when CHI is used
 - $\hfill\square$ Plasmas with favorable high $\kappa,$ low $I_i,$ n_e
- TSC modeling predicts a doubling of closed flux current > 400kA in NSTX-U
 - Suitable for hand-off to NBI heating/current drive

Ono PP8.06 (We) S. Gerhardt, et al., Nucl. Fusion 52 (2012) 083020


Raman GO6.011 (Tu)

11 NSTX-U 54th APS DPP Meeting: GO6.01 Overview of Results and Analysis from NSTX (S.A. Sabbagh, for the NSTX Team) Oct 30th, 2012

Rapid Progress is Being Made on NSTX Upgrade

Old center stack **NEW Center Stack**

2nd neutral beam moved into | **D** TF quadrant assembled (first plasma anticipated Summer 2014) place **Ono PP8.06 (We)**

(I) NSTX-U 54th APS DPP Meeting: GO6.01 Overview of Results and Analysis from NSTX (S.A. Sabbagh, for the NSTX Team) Oct 30th, 2012 12

NSTX Presentations at the 54th APS DPP Meeting

Invited / Tutorial Talks

Contributed Talks

 Tuesday Modifications of impurity transport and divertor sources with lithium wall conditioning in NSTX 	Scotti Gl2.005 (11:30 AM – 12:00 PM)	Tuesday NSTX Overview Ohmic H-mode intrinsic rotation CAE/GAE structure and ID CAE/GAE-induced transport Divertor heat asymmetry	Sabbagh J-K. Park Crocker Tritz Ahn	GO6.001 GO6.002 GO6.003 GO6.004 GO6.006
 Interplay between coexisting MHD instabilities mediated by energetic ions in NSTX H-mode plasmas 	Bortolon JI2.002 (2:30 PM – 3:00 PM)	Impurity effects on lithium wall RWM control / physics Co-axial helicity injection RF power flow in SOL 2D ELM precursor studies	Capece Berkery Raman Perkins Sechrest	GO6.008 GO6.009 GO6.011 GO6.012 GO6.013
ThursdayPhysics of tokamak plasma start-up	Mueller UT3.001 (2:00 PM - 3:00 PM)	Wednesday Bootstrap current model	Chang	PO7.007
 Friday Assessing low wavenumber pedestal turbulence in NSTX with measurements and simulations 	Smith YI3.004 (11:00 AM – 11:30 AM)	Poster Se Session PP8: Wedne (Room: Ha	esday Aft	ernoon