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Overview
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• Motivation
– Prediction for toroidal rotation → ExB rotation → Stability

• Observation
– For intrinsic rotation generation in Ohmic H-mode plasmas

• Correlation
– Between rotation and ion temperature gradient

• Comparison
– With residual stress theory

• Discussion and Summary
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• Toroidal rotation could be well measured without beams by Passive CHERS
– Passive CHERS measures background carbons

• Toroidal rotation increases by up to 10~20km/s through Ohmic L-H transition
• Toroidal rotation slowly evolves afterwards, towards a balance among various 

momentum sources – diffusion, convection, counter-torque by MHDs 
• So, a short time (~10ms)  around L-H transition was focused in this study   

Toroidal rotation increases during Ohmic L-H 
transition and slowly evolves afterwards  
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[Bell, POP 17, 082507 (2010)]
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Through L-H Transition,

• Vi rapidly increases at R<1.40m, 
then remains relatively constant

• Ti (and possibly ∇Ti ) also rapidly 
increases at R<1.40~1.45m and 
remains relatively constant

• ne (and Te) increases gradually driven 
by the pedestal development, but ∇ne
(and ∇Te) weakly changes at 
R<1.40m

• Observations indicate possibility 
of correlation between Vi and ∇Ti

Profile evolutions show intrinsic rotation may be 
correlated with ion temperature change 
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• Best correlation was found between jumps in Vφ and ∇Ti, compared to 
∇Te, ∇ne, (~∇ni, expectation for nc=2~3%ne , based on NBI blip check) 

Best correlation was found between rotation and 
ion temperature gradient change
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Intrinsic rotation is established by intrinsic torque, 
and also momentum diffusion and convection

• Simplified (and cylindrical) form of torque balance is 

• There is no input torque, and also torque by intrinsic error field is very 
small in Ohmic plasmas due to high collisionality

• During the short time in LH transition,  
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• ITG-driven residual stress theory 
predicts:

• With constant LT, torque is given by:

• Measured torque give the best 
correlation with ∇Ti

• However the exact fits result in the 
wide range of χi

– Intrinsic torque may be correlated 
with higher derivatives of Ti

Intrinsic torque is best correlated with ion temperature 
gradient, as predicted by residual stress theory
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• If residual stress theory is used to predict the finally established rotation:

Residual stress theory predicts the established 
rotation to be smaller than diamagnetic rotation 
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• NSTX intrinsic rotation through L-H transitions can be combined with 
empirical scaling of conventional tokamaks

• However, NSTX results yield small proportional factor, probably due to 
large toroidal β and q* in ST  

NSTX results can be combined with other 
tokamak scaling on intrinsic rotation
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[Rice, NF 47, 1618 (2007)]

NSTX : MA<0.30β1.4q*
2.3
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Summary

• Intrinsic rotation generation was observed during Ohmic L-H transitions, 
using passive CHERS measurements

• Best correlation for toroidal rotation and torque can be found with ∇Ti as 
residual stress theory predicted

– However, the fits are not so robust quantitatively, and the intrinsic torque may 
be correlated with higher derivatives of Ti as theory also predicted

• NSTX intrinsic rotation can be combined with tokamak rotation scaling

• However, uncertainty in determining intrinsic toroidal rotation or ExB
rotation is as large as poloidal rotation or diamagnetic rotation
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Back up
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• Passive CHERS measures Carbon impurities (C5+) in the background and 
gives (Ti,Vφ) profile information

• Passive CHERS agrees well with active CHERS in the edge – checked 
with NBI blips in similar target plasmas 

• (Ti,Vφ) profiles in the edge were fully used after adequate smoothing
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Toroidal rotation and ion temperature profiles in 
Ohmic plasmas were measured by passive CHERS

Passive CHERS

Valid

[Bell, POP 17, 082507 (2010)]

#117257

#141730 Comparison with Active CHERS

H-mode
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• One mechanism for intrinsic rotation:
– ExB shear, which is directly related to 

thermodynamic force, can cause 
symmetry breaking and residual stress

• A theoretical quantification for intrinsic 
rotation:

– Possible toroidal effects are ignored in 
this comparison

• Experiment in NSTX and theory can 
be best correlated with Pr~0.54

Experiment and recent theory agree well using 
Prandtl number as a free parameter
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• Main ion Vφ is required instead of 
impurity ion Vsφ

– Difference can be large when Vφ is 
low without auxiliary heating

• One way is to use neoclassical 
theory

– NCLASS is used in a few shots 
with Zeff~1.5 (by NBI blip check)

– Neoclassical theory calculates 
poloidal rotation Vθ (main ion), Vsθ
(impurity ion) through parallel force 
balance equations

• However, present neoclassical 
predictions were particularly failed 
in NSTX – Ignorable poloidal
rotation may be a better assumption 
in NSTX

Main ion rotation is required for comparison with 
theory, but may largely differ from impurity rotation
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Main ion 

Carbon

[Bell, POP 17, 082507 (2010)]
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• Equilibrium flow for each species obeys

• So difference in toroidal rotation is given by  

• If poloidal and impurity pressure are ignored (considering R-2 too)

• If parallel flows are strictly equilibrated,

• Even more rigorous parallel force and heat flux balance likely yields 

Difference in toroidal rotation can be estimated 
by difference in poloidal rotation 
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• Every flow component associated with intrinsic rotation determination is an 
order of diamagnetic rotation

• Force balance equation:

– Note these terms are not small in the pedestal

• Most important information is ExB rotation:

Every flow component involved in rotation 
balance is an order of diamagnetic rotation
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• Imaginary part of δWk in RWM stability:

• RWM kinetic stabilization will be maximized by resonance :

• Stability is often a complex function of ExB rotation, unless ExB rotation 
can be strengthened by auxiliary heating 

• So it is important to precisely predict ExB rotation, by both toroidal and 
poloidal flows of impurity ions if possible

ExB rotation is important for stability, and is 
competing with other diamagnetic rotations
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• RMP, NRMF (for QH), intrinsic error field and its correction field are under 
active consideration in ITER, so various TNTV is expected

• With rotation scaling (or use intrinsic torque scaling),

• Rotation will be newly established at: 

• Final ExB rotation will determine stability:

Non-axisymmetry can be possibly imposed in ITER, 
and so new torque balance should be solved
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• NSTX intrinsic rotation through L-H transitions can be combined with 
empirical scaling of conventional tokamaks (by Rice)

• However, NSTX results yield small proportional factor, probably due to 
large toroidal β and q* in ST  

NSTX results can be combined with other 
tokamak scaling on intrinsic rotation
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[Rice, NF 47, 1618 (2007)]
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“Intrinsic error torque” is ignorable in Ohmic
plasmas compared to measured “intrinsic torque”

• Intrinsic error torque exists (even can be small) due to imperfect coils
• Actual calculation in Ohmic H-mode shows this “intrinsic error torque” is much less 

than measured “intrinsic torque”, so is ignored in our analysis  
• This does not mean “intrinsic error torque” is generally small, since NTV is small for 

low β but can increase rapidly with β (e.g.) Even without collisionality dependency: 
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Summary (TTF)

• NSTX intrinsic rotation studies are successfully done through Ohmic L-H 
transitions, using Passive CHERS

• Best correlation can be found between (∇Ti, Vφ) as theory 
• NSTX intrinsic rotation can be combined with empirical Rice scaling, but 

with small proportional factor
• However, uncertainty in determining intrinsic ion rotation is as large as 

measurement since every flow component is in a similar order
• Many stability involves each flow in a similar order too
• Most important component is ExB, and its measurement and scaling 

should be highly precise to predict stability in ITER – Both toroidal and 
poloidal flow measurements of impurity ions are perhaps essential 

• In intrinsic environment, torque can be inferred if rotation scaling exists as 
well as momentum confinement scaling (or vice versa), and so torque 
balance, rotation evolution, stability can be determined
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