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•  Beam-ion-excited high frequency Alfvén Eigenmodes (AE) 
correlate with enhanced core χe 
–  posited cause: resonant interaction of  

multiple modes with electron 

•  High frequency AE structure  
measured with reflectometer array  
–  Measurements reveal two kinds of mode 

•  Local dispersion relations help  
identify modes 
–  Two kinds of mode are CAEs and GAEs  

•  Measurements consistent with  
transport hypothesis 
[N. N. Gorelenkov et al., Nucl. Fusion 50, 084012 (2010)] 

Observed χe enhancement motivates measurement and 
identification of high frequency AEs 

[D. Stutman et al., PRL 102 115002 (2009)]!
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AE radial structure measured with array of reflectometers 

•  Reflectometer measures path length change (δL) of 
microwaves reflected from plasma 
–  Microwaves reach cutoff at ω2 = ωp

2 = e2n0/ε0me 

•  For large scale modes, cutoff displaces due to δn at cutoff ⇒  
“effective displacement” ξ ≡  δL/2 approximates cutoff 
displacement 

magnetic axis!



NSTX-U! GO6.00003, “CAE & GAE Structure and Identification,” N. A. Crocker – 54th APS DPP, Providence, RI!

•  Structure measured with  
reflectometer array 

•  Toroidal mode number (n) measured 
 with edge δb toroidal array 

•  Structures tend to fall in two categories: 
(1)  broad structure, peaking toward core 

  mostly f < ~ 600 kHz, n = -6 – -8 
(2)  strongly core localized 

  mostly f > ~ 600 kHz, n = -3 – -5 

Measurements reveal two kinds of high frequency AEs  
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Broad structure (f < ~ 600 kHz) modes are GAEs 

•  GAEs are shear Alfvén: 
–  peak at weak shear, e.g. at axis 

•  Strong q0 variation ⇒ comparison  
with fGAE(t) stringent test of identity 
–  Fit to fGAE(t) ⇒ m 
–  fGAE(t) sensitive to m/q if |m| >> 1 
–  q0 varies substantially (1.7 – 1.1)  

over t = 400 – 700 ms 

•  Modes with f < ~ 600 kHz:  
f(t) ~ fGAE (t)  
–  Modes with f > ~ 600 kHz: 

f(t) NOT consistent with fGAE(t)   

For “GAEs”, fGAE predicts fmode well 

fGAE =
k||vA
2π

+ nfROT , k|| ≈
1
R
m
q
− n

Equilibrium trends 

q0"
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Strongly core localized modes are CAEs 

•  Compressional Alfvén waves propagate ONLY where: 

•  “Well” formed in R–Z plane 

•  CAE must fit inside “well” 
–  V ⇒ R-Z “wavelength”: 

•  Well width & λR-Z compared 
–  λR-Z calculated at deepest point in well 
–  Width (ΔR) determined in midplane  
–  Toroidal Doppler shift taken into account 

•  Modes with f > ~ 600 kHz: ”well” is sufficiently deep 
–  Modes with f < ~ 600 kHz: no “well”, or “well” too shallow 

CAE “well”!
f = 633 kHz, n = -4 (shot 141398, t = 582 ms)!

V < 0!

ω 2 = vA
2k2 ⇔∇R−Z

2 ζ −V R,Z( )ζ = 0
V R,Z( ) = n R( )2 − ω vA( )2
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2 n R( )2
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Measurements consistent with  
ORBIT modeling prediction for enhanced χe 

•  ORBIT modeling ⇒ χe enhancement due to resonant electron 
interaction with multiple modes 

[N. N. Gorelenkov et al., Nucl. Fusion 50, 084012 (2010)] 

–  total fluctuation level needed to explain χe ehancement:  
α = δA||/B0R0 = 4 x 10-4 

–  threshold at ~ 15 modes 

•  For GAEs, α = 3.4 x 10-4 in core, consistent with prediction 
–  for shear Alvén modes: ξr = δBr/ik||B0 = αR0kθ/k||  
–  ξr estimated by reflectomter |ξ| @ R = 1.16 m 
–  k|| & kθ estimated using shear dispersion relation 

•  Number of modes (including CAEs) is 15, consistent with 
prediction 
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Summary 

•  Observed χe enhancement motivates measurement and 
identification of high frequency AEs 

•  Measurements reveal two kinds of mode 
(1)  broad structure, mostly f < ~ 600 kHz, n = -6 – -8 
(2)  strongly core localized, mostly f > ~ 600 kHz, n = -3 – -5 

•  Local dispersion relations help identify modes 
(1)  broad structure modes are GAEs 
(2)  strongly core localized modes are CAEs 

•  Amplitude and number of modes consistent with hypothesis for 
χe enhancement, resonant interaction with multiple modes. 

Future Work 
•  Use measurements to guide ORBIT modeling to predict χe 

(K. Tritz, GO6.00004) 
•  Validate simulations of HYM code (E. Belova, PP8.00022) 
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Overview 

•  Motivation: beam-ion-excited high frequency Alfvén 
Eigenmodes (AE) correlate with enhanced core χe 
[D. Stutman et al., PRL 102 115002 (2009)] 
–  posited cause: resonant interaction in presence of multiple modes 

•  Structure measurements:  
high frequency AE structure  
measured with reflectometer array  
–  Measurements reveal two kinds of mode 

•  Identification analysis: local dispersion 
relations used with f & n to identify modes 
–  Two kinds of mode are CAEs (f > ~ 600 kHz) and GAEs (f < ~ 600 kHz) 

•  Comparison with transport hypothesis: 
[N. N. Gorelenkov et al., Nucl. Fusion 50, 084012 (2010)] 
•  Amplitude and number of modes consistent with posited cause of 

enhanced core electron thermal transport 
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High frequency AEs proposed as cause of observed 
χe enhancement [D. Stutman et al., PRL 102 115002 (2009)]  

•  high f AE activity in core of NSTX beam-heated plasmas – 
correlates with enhanced χe 

•  f ~ fbe ~ 600 kHz ⇒ resonant orbit 
 modification 
–  fbe ≡ trapped electron bounce frequency 

•  High f AEs identified as GAEs  

•  GAE core localization expected ⇒  
active in region of enhanced χe 

•  Orbit modeling ⇒   
significant χe enhancement  
from multiple modes  
[N. N. Gorelenkov et al., Nucl. Fusion 50, 084012 (2010)] 

–  threshold at ~ 15 modes 
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AE radial structure measured with array of reflectometers 

•  Reflectometer measures path length change of microwaves 
reflected from plasma 
–  Microwaves propagate to “cutoff” layer, where density high enough 

for reflection (ω2 = ωp
2 = e2n0/ε0me) 

•  for large scale modes, cutoff displaces due to δn at cutoff ⇒  
“effective displacement” ξ ≡  δφ/2kvac approximates cutoff 
displacement 
–  δφ = phase between reflected and launched waves changes 

•  Two arrays of reflectometers: 
–  Q-band: 8 channels — 30–50 GHz 
–  V-band:  8 channels — 55–75 GHz 

•  Cutoffs span large radial range  
in high density plasmas  
(n0 ~ 1 – 7 x 1019 m-3) 



NSTX-U! GO6.00003, “CAE & GAE Structure and Identification,” N. A. Crocker – 54th APS DPP, Providence, RI!

Measurements reveal two kinds of high frequency AEs  
in H-mode beam-heated plasmas 

•  Effective displacement (ξ) measured at  
16 radii with reflectometer array 
–  shear AEs: ξ dominated by displacement of ∇n0 
–  compressional AEs: compressional δn  

contributes to ξ 
•  Toroidal mode number (n) measured with  

δbθ edge toroidal array 
–  12 locations, irregular spacing (Δφ) 
–  10° ≤ Δφ ≤ 180° ⇒ resolves |n| ≤ 18 

•  Modes structures tend to fall in two categories: 
(1) broad structure, peaking toward core  

with significant edge |ξ| 
  mostly f < ~ 600 kHz, n = -6 – -8 
  typically larger core |ξ| & larger edge δb 

(2) strongly core localized, vanishing edge |ξ| 
  mostly f > ~ 600 kHz, n = -3 – -5 
  typically larger larger core |ξ| &  

smaller edge δb 



NSTX-U! GO6.00003, “CAE & GAE Structure and Identification,” N. A. Crocker – 54th APS DPP, Providence, RI!

Modes can be identified as CAEs or GAEs  
via mode number and frequency evolution 

AE frequency evolution 
141398 

n=-4 

n=-3 

n=-3 

n=-8 

δb  

•  Dispersion relation parameters measured: 
–  q0 and B0 from equilibrium reconstruction using 

magnetic field pitch from Motional Start Effect 
–  ne0 measured via Multipoint Thomson Scattering 
–  Alfvén velocity, vA0 = B0/(µ0ρ0)½  

•  ρ0=mDne0, mD=Deuterium mass 
–  Toroidal rotation frequency, fROT0, from Charge 

Exchange Recombination Spectroscopy 
•  For GAEs, expect f(t) consistent with local shear 

Alfvén dispersion relation, but not CAEs 

•  Expect CAEs to fit in CAE “well”, but not GAEs 
–  compressional Alfvén waves propagate ONLY 

where: 

–  “wavelength” in R-Z plane must fit inside “well” 

Equilibrium trends 
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Sensitivity of fGAE to q0 helps distinguish CAEs & GAEs 

•  GAEs are shear Alfvén: 

•  fGAE(t) sensitive to m/q0 if |m| >> 1 
•  q0 varies substantially (1.7 – 1.1) over  

t = 400 – 700 ms 
•  Modes with f < ~ 600 kHz, n = -6 – -8:  

f(t) ~ fGAE (t)  
–  |n| >> 1 ⇒ low |m| ⇒ fGAE  

insensitive to q0 
•  Modes with f > ~ 600 kHz, n = -3 – -5: 

f(t) NOT consistent with fGAE(t)   
–  low |n|, high f ⇒ high |m| ⇒  

strong q0 sensitivity 

For “GAEs”, fGAE predicts fmode well 

For “CAEs”, fGAE predicts fmode poorly 

fGAE =
k||vA
2π

+ nfROT , k|| ≈
1
R
m
q
− n
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For identification as CAE, sufficiently wide & deep 
“well” must exist for mode with measured f and n 

•  For n ≠ 0, compressional Alfvén “well” formed: 
–  compressional Alfvén waves propagate ONLY where: 

•  CAE “wavelength” in R-Z plane must fit inside “well” 

•  For observed modes, f & n used to determine well  
width and λR-Z 
–  λR-Z calculated at deepest point in well 
–  Width (ΔR) determined in midplane  

•  Modes with f > ~ 600 kHz, n = -3 – -5 sufficiently  
wide and deep 

•  Modes with f < ~ 600 kHz, n = -6 – -8 do not fit in “well” 
–  For some f & n, (n/R)2vA

2 – (ω-nωROT) 2 > 0 everywhere 
–  For some f & n, λR-Z >> ΔR 

CAE “well”  for f = 633 kHz, n = -4!
(shot 141398, t = 582 ms)!
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Amplitude and number of modes consistent with  
ORBIT modeling prediction for enhanced χe 

•  ORBIT modeling indicates significant χe enhancement due to 
resonant electron interaction of multiple modes 

[N. N. Gorelenkov et al., Nucl. Fusion 50, 084012 (2010)] 

–  total fluctuation level needed to explain χe ehancement:  
α = δA||/B0R0 = 4 x 10-4 
•  χe scales strongly with α ⇒ bursty fluctuations give more χe than would expect from 

r.m.s α ⇒  should evaluate time dependence carefully 
–  threshold at ~ 15 modes 

•  For modes with f < 600 kHz, calculated r.m.s. α = 3.4 x 10-4 in core, 
consistent with prediction for necessary fluctuation level 
–  for shear Alvén modes: ξr = δBr/ik||B0 = αR0kθ/k||  
–  ξr estimated by reflectomter |ξ| @ R = 1.16 m 
–  k|| & kθ estimated using f ≈ k||vA/2π + nfROT, kθ = m/r, k|| = |m/q – n|/R,  

taking q = q0 and r = 1.16 m – R0 
•  Number of modes (including CAEs) is 15, consistent with prediction 

for necessary fluctuation level 
•  Model needed for CAE effect on χe 
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•  Two arrays: “Q-band” & “V-band” 
– Q-band: 30, 32.5, 35, 37.5, 42.5, 45, 47.5 & 50 GHz 
– V-band: 55, 57.5, 60, 62.5, 67.5, 70, 72.5 & 75 GHz 

•  Arrays closely spaced (separated ~ 10° toroidal) 
•  Single launch and receive horn for each array 
•  Horns oriented perpendicular to flux surfaces ⇒  

frequency array = radial array 
•  Cutoffs span large radial range in high density 

plasmas (n0 ~ 1 – 7 x 1019 m-3) 

AE radial structure measured with array of reflectometers 

NSTX cross-section 

Launch and Receive Horns 
(Interior View) 

30-50 GHz 

55-75 GHz 
(not shown: horns modified to 
optimize for frequency range) 

ne from 
Multipoint 
Thomson 
Scattering!
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Reflectometers used to measure local AE density fluctuation 

•  Microwaves propagate to “cutoff” layer, where density high 
enough for reflection (ωp = ω) 
–  Dispersion relation of “ordinary mode” 

microwaves: ω2 = ωp
2 + c2k2,  

ωp
2 proportional to density (ωp

2 = e2n0/ε0me) 

–  k → 0 as ω → ωp,  
microwaves reflect at k = 0  

•  Reflectometer measures path length  
change of microwaves reflected  
from plasma 
–  phase between reflected and launched waves changes (δφ)  

•  for large scale modes, cutoff displaces due to δn at cutoff ⇒  
“effective displacement” ξ ≡  δφ/2kvac approximates cutoff 
displacement 

electric field!

Microwave (“O-mode”) propagation!
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High frequency AEs commonly excited by beam ions in NSTX 

•  High f AEs (f /fc0 > ~ 0.2) commonly observed in NSTX with 
reflectometers & edge δb 

•  Excited by Doppler-shifted resonance  
with beam ions 
–  Edge δbθ toroidal array typically shows  

|n| < ~ 15, propagation counter to  
beam ions (n < 0 ) 

•  High f AE activity correlated with  
enhanced χe 

•  Other significant effects on plasma 
–  shown to cause fast-ion transport  
–  postulated to cause ion heating 

141398 δb  
fc0 = 2.4 MHz 
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Future Work 

•  Extend ORBIT modeling to include CAEs in prediction of χe 
enhancement  

•  Use mode structure measurements to guide inputs to ORBIT 
modeling 

•  Investigate effects of CAEs and GAEs on fast-ion transport 
using ORBIT modeling with measured mode structures 

•  Compare CAE/GAE amplitude and structure measurements 
with theory predicting ion heating 
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Future Work 

•  Use mode structure measurements to guide inputs to ORBIT 
modeling  

–  see GO6.00004: “Investigation of CAE/GAE-induced electron thermal 
transport for NSTX-U”, K. Tritz 

•  Validate CAE/GAE simulations of HYM (HYbrid kinetic and 
MHD) code  

–  see PP8.00022: “Numerical Simulations of NBI-driven CAE modes in 
H-mode Discharges in NSTX”, E. Belova 


