Low-Z Impurity Transport Analysis by Transient Gas Puff Experiments

Comparisons With Neoclassical and Turbulent Predictions

By Stuart Henderson¹

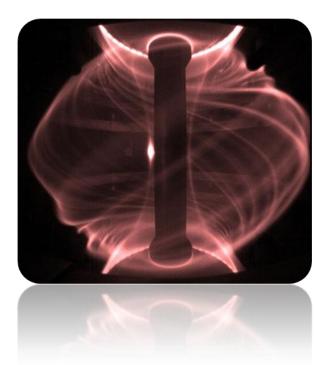
with

L. Garzotti², H. Meyer², M. O'Mullane¹, A. Patel², H. Summers¹, M. Valovič² and the MAST team

¹ Departments of Physics SUPA, University of Strathclyde, Glasgow, G4 ONG, UK

² EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB

Work supported by the RCUK Energy Programme and EURATO



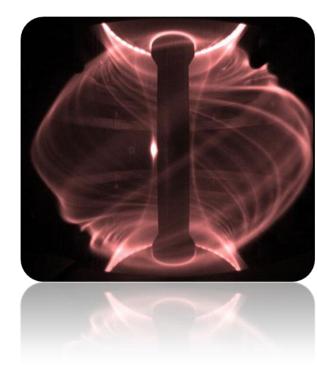
Motivation for studying impurity transport

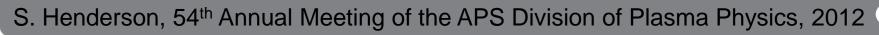
• Experimental method of extracting transport coefficients

• Changing dynamics during a neoclassical and anomalous regime

Ongoing work

Conclusions



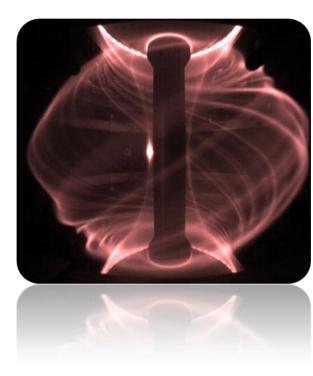


Motivation

Peaked low-Z impurity profile dynamics have important implications for fusion devices

- Fuel dilution
- Loss of core temperature due to impurity line emission and Bremsstrahlung emission

Motivation


Peaked low-Z impurity profile dynamics have important implications for fusion devices

- Fuel dilution

 Loss of core temperature due to impurity line emission and Bremsstrahlung emission

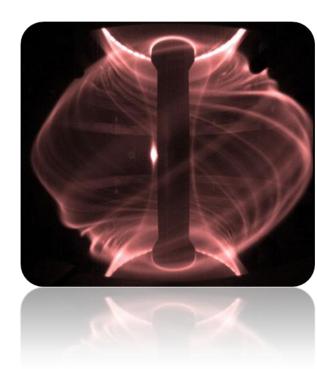
Experimental impurity transport measurements on spherical tokamaks are limited ^{1,2,3}

- First transport analysis of helium and carbon

¹ D. Stutman, M. Finkenthal, R. Bell, *et al*, Phys. Plasmas, **10**, 4387 (2003)
 ² L. Delgado-Aparicio, D. Stutman, K. Tritz, *et al*, Nucl. Fusion, **49**, 085028 (2009)
 ³ I. Lehane, G. Turri, R. Akers, *et al*, 30th EPS Conference, **27A**, 3 (2003)

Motivation

Peaked low-Z impurity profile dynamics have important implications for fusion devices

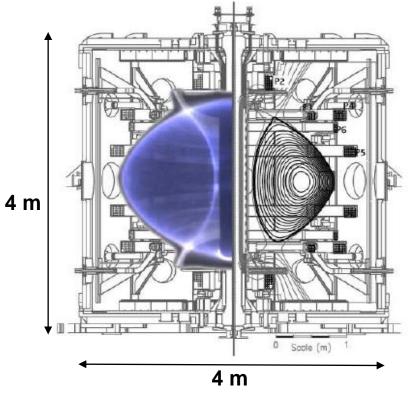

- Fuel dilution

 Loss of core temperature due to impurity line emission and Bremsstrahlung emission

Experimental impurity transport measurements on spherical tokamaks are limited ^{1,2,3}

- First transport analysis of helium and carbon

Some aspects of fluid model theories describing anomalous impurity transport have yet to be experimentally tested ⁴

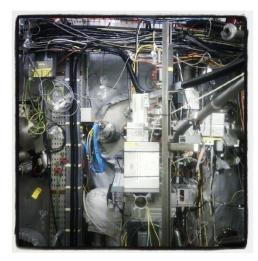


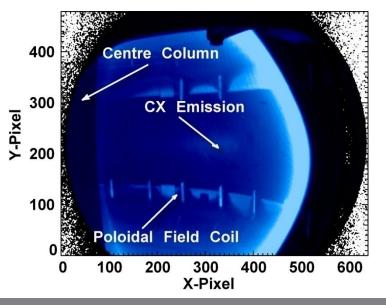
⁴ C. Angioni and A. Peeters, Phys. Rev. Lett., **96**, 1 (2006)

Experimental Method

$$I_p = [0.6, 0.9] \text{ MA}$$

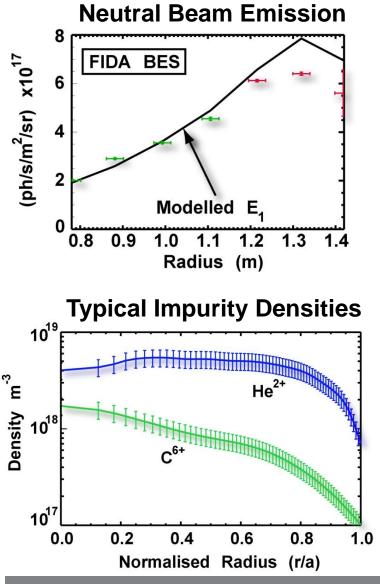
 $B_{\phi} = 0.5 \text{ T}$
 $P_{\text{NBI}} = [1.8, 3.5] \text{ MW}$


• Perturbative Gas Puff Experiments on MAST


- 50 ms methane and helium injections
- Plasma current scan [0.6 MA, 0.9 MA]
- Confinement scan [L- & H-mode]

Experimental Method

Perturbative Gas Puff Experiments on MAST


- 50 ms methane and helium injections
- Plasma current scan [0.6 MA, 0.9 MA]
- Confinement scan [L- & H-mode]
- RGB 2D Camera ⁵
 - Simultaneously views both CXR enhanced C⁵⁺ [λ=529.3 nm] and He⁺ [λ=468.8 nm] spectral lines
 - Plasma cross-section in VGA resolution

⁵ A. Patel et al, Paper Submitted, (2012)

Experimental Method

- Perturbative Gas Puff Experiments on MAST
 - 50 ms methane and helium injections
 - Plasma current scan [0.6 MA, 0.9 MA]
 - Confinement scan [L- & H-mode]
- RGB 2D Camera ⁵
 - Simultaneously views both CXR enhanced C⁵⁺ [λ=529.3 nm] and He⁺ [λ=468.8 nm] spectral lines
 - Plasma cross-section in VGA resolution
- Modelled Impurity Density
 - Beam neutrals modelled ⁶
 - ADAS⁷ effective CX emission

⁶ M. Schneider *et al*, Nucl. Fusion, **51**, 063019 (2011)
⁷ H. Summers, ADAS User Manual, University of Strathclyde, **V2.7**, 2004

Transport Coefficients

• The impurity transport code, SANCO, is used to solve the coupled continuity equation

$$\frac{\partial n_{z}}{\partial t} = -\frac{1}{r} \frac{\partial}{\partial r} (r\Gamma_{z}) + \sigma_{z}; \quad \forall z \in [1, Z] \qquad 1) \text{ Continuity Equation}$$

$$\Gamma_{z} = \Gamma_{Turb} + \Gamma_{neo} = -D_{z} \frac{\partial n_{z}}{\partial r} + v_{z} n_{z} \qquad 2) \text{ Empirical Ansatz}$$

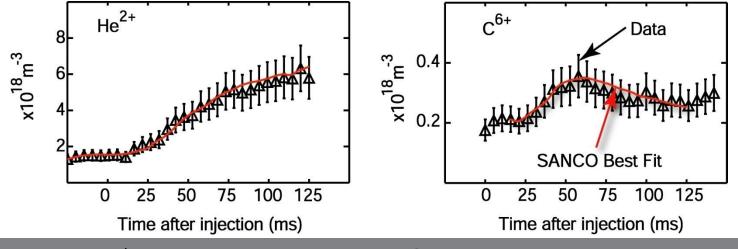
Transport Coefficients

• The impurity transport code, SANCO, is used to solve the coupled continuity equation

$$\frac{\partial n_{z}}{\partial t} = -\frac{1}{r} \frac{\partial}{\partial r} (r\Gamma_{z}) + \sigma_{z}; \quad \forall z \in [1, Z] \qquad 1) \text{ Continuity Equation}$$

$$\Gamma_{z} = \Gamma_{Turb} + \Gamma_{neo} = -D_{z} \frac{\partial n_{z}}{\partial r} + v_{z} n_{z} \qquad 2) \text{ Empirical Ansatz}$$

• Electron ionization, excitation and recombination processes which connect neighbouring charge states are modelled using ADAS

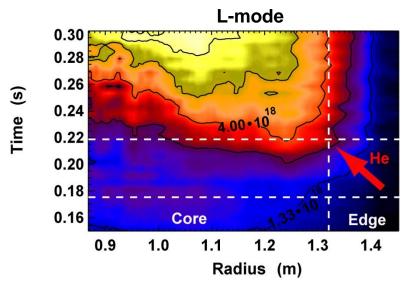

Transport Coefficients

• The impurity transport code, SANCO, is used to solve the coupled continuity equation

$$\frac{\partial n_{z}}{\partial t} = -\frac{1}{r} \frac{\partial}{\partial r} (r\Gamma_{z}) + \sigma_{z}; \quad \forall z \in [1, Z] \qquad 1) \text{ Continuity Equation}$$
$$\Gamma_{z} = \Gamma_{Turb} + \Gamma_{neo} = (-D_{z}) \frac{\partial n_{z}}{\partial r} (+ v_{z}) \frac{\partial n_{z}}{\partial r} \frac{\partial n_{z}}{\partial r} (+ v_{z}) \frac{\partial n_{z}}{\partial r} \frac{\partial n_{z}}{\partial r}$$

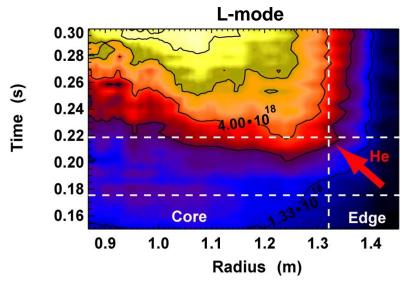
• Electron ionization, excitation and recombination processes which connect neighbouring charge states are modelled using ADAS

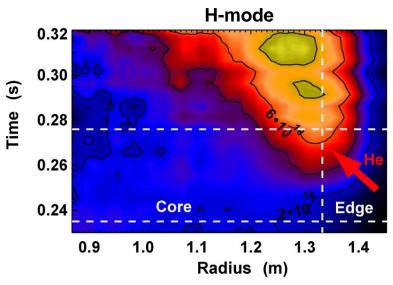
• Diffusivity (D) and convective velocity (v) coefficients are adjusted to minimize χ^2 between SANCO and experimental C⁶⁺ and He²⁺ densities


Changing dynamics during L- and H-mode

Changing dynamics during L- and H-mode

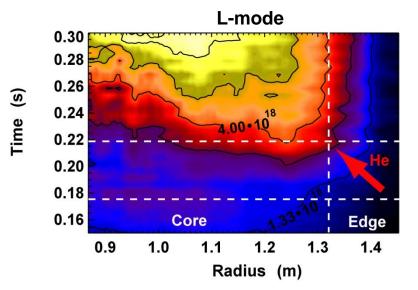
Accumulation of He²⁺ in L-mode

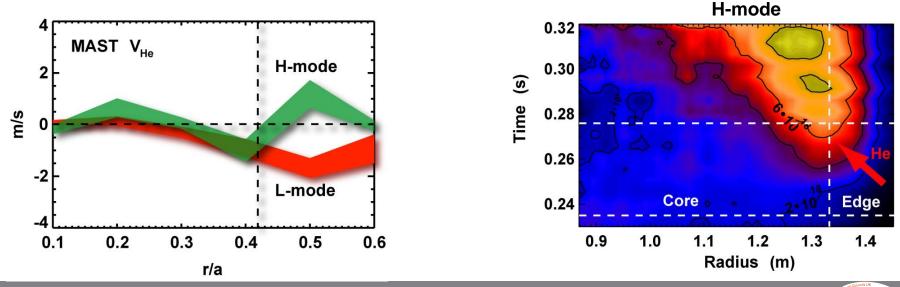




Changing dynamics during L- and H-mode

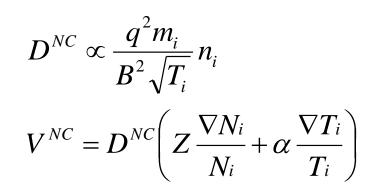
- Accumulation of He²⁺ in L-mode
- Screening of He²⁺ in H-mode

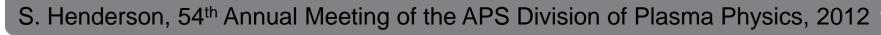




Changing dynamics during L- and H-mode

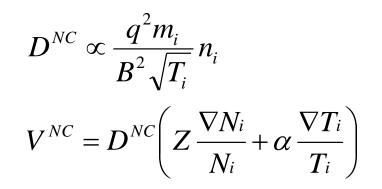
- Accumulation of He²⁺ in L-mode
- Screening of He²⁺ in H-mode
- Switch in convection direction at r/a~0.5

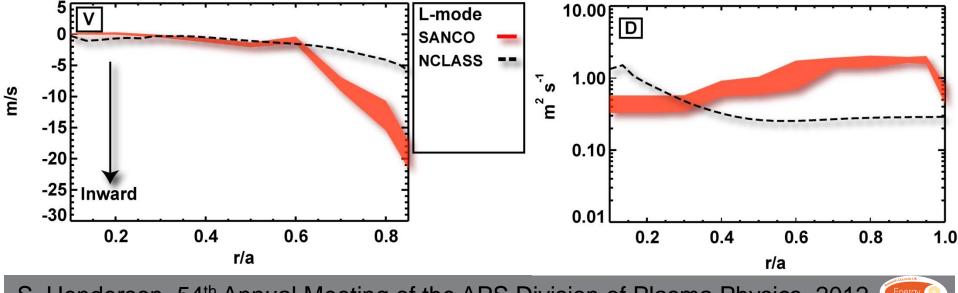




Changing dynamics during L- and H-mode

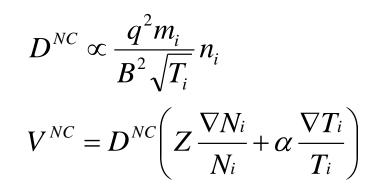
- Accumulation of He²⁺ in L-mode
- Screening of He²⁺ in H-mode
- Switch in convection direction at r/a~0.5
- Neoclassical theory Vs. Experiment

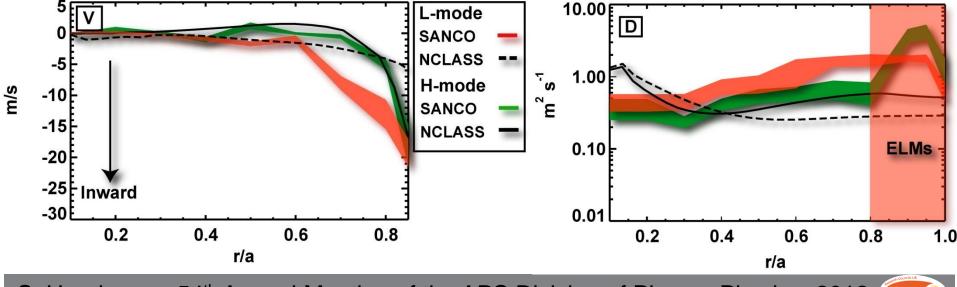




Changing dynamics during L- and H-mode

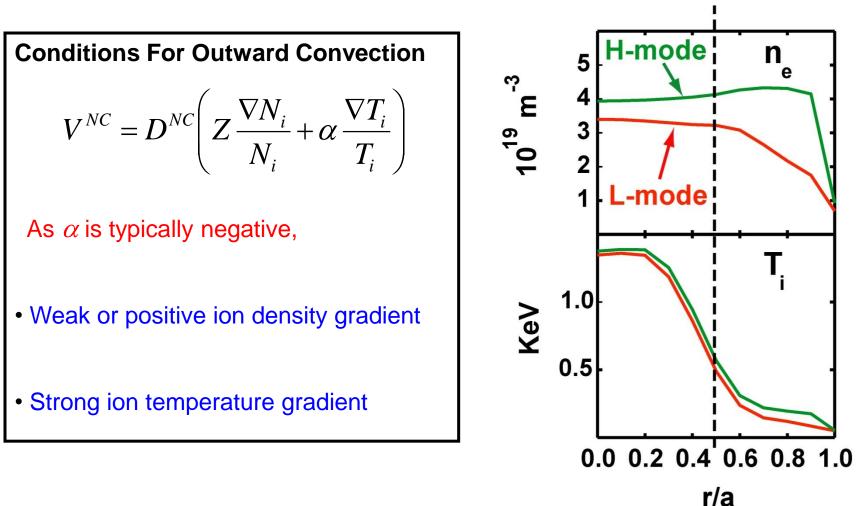
- Accumulation of He²⁺ in L-mode
- Screening of He²⁺ in H-mode
- Switch in convection direction at r/a~0.5
- Neoclassical theory Vs. Experiment
 - L-mode anomalous for r/a > 0.4





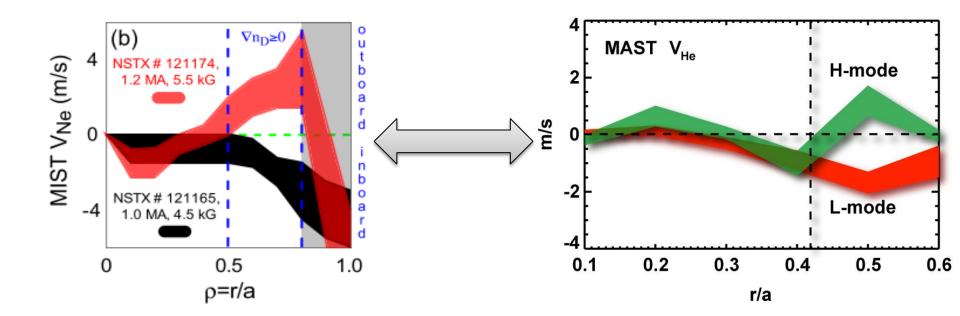
Changing dynamics during L- and H-mode

- Accumulation of He²⁺ in L-mode
- Screening of He²⁺ in H-mode
- Switch in convection direction at r/a~0.5
- Neoclassical theory Vs. Experiment
 - \blacktriangleright L-mode anomalous for r/a > 0.4
 - H-mode neoclassical for r/a < 0.8</p>



H-Mode Neoclassical Screening

Outward convection Pinch

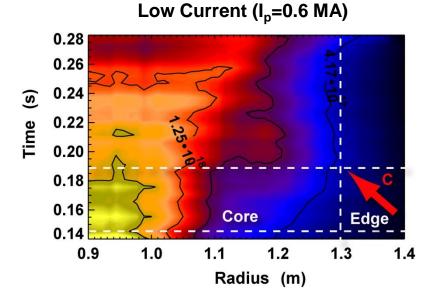


Previous NSTX Results

□ Neon gas puff experiment during an H-mode I_p-scan at constant q

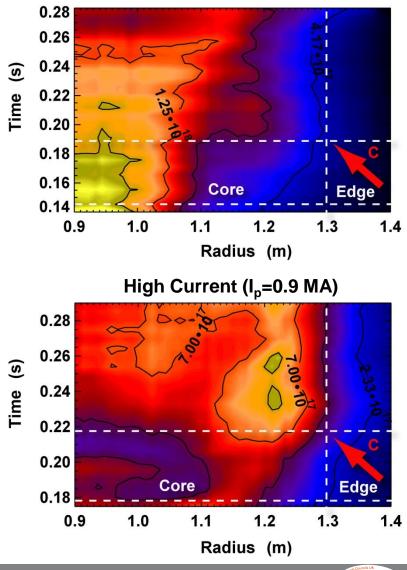
- L. Delgado-Aparicio, D. Stutman, K. Tritz, et al, Nucl. Fusion, 49, 085028 (2009)

Outward convection in H-mode observed on both NSTX and MAST

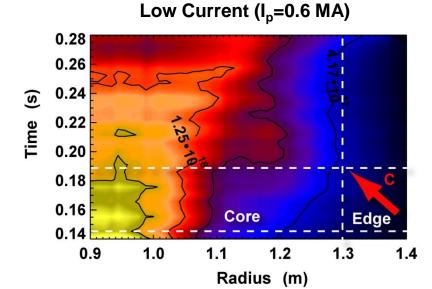


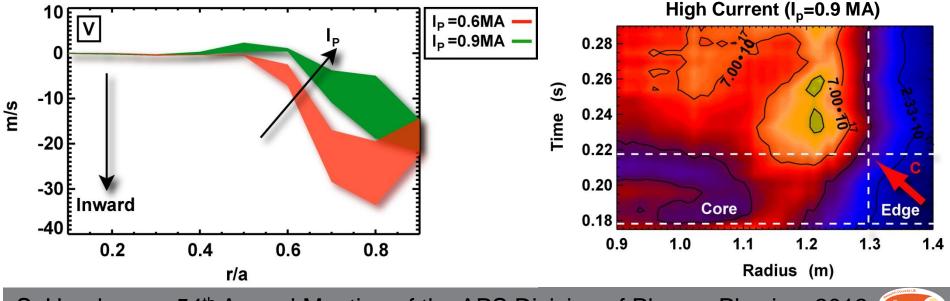
• Changing dynamics during high and low I_p

• Changing dynamics during high and low I_p


 \succ Strong accumulation of C⁶⁺ in Low I_p

• Changing dynamics during high and low I_p

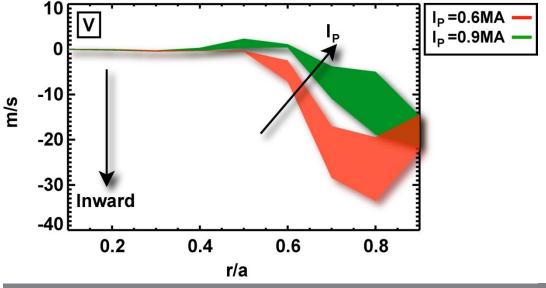

- Strong accumulation of C⁶⁺ in Low I_p
- Weak accumulation of C⁶⁺ in High I_p



Low Current (I_p=0.6 MA)

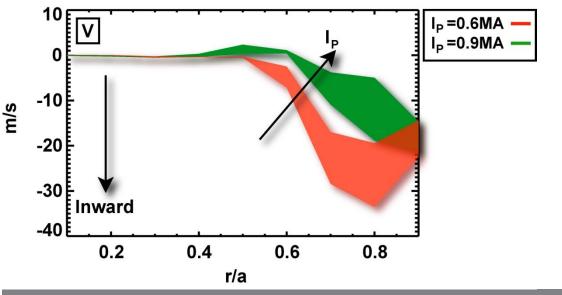
• Changing dynamics during high and low I_p

- Strong accumulation of C⁶⁺ in Low I_p
- Weak accumulation of C⁶⁺ in High I⁻_p
- Trend in convection direction for r/a > 0.5



- ${\boldsymbol{\cdot}}$ Changing dynamics during high and low ${\boldsymbol{I}}_{{\boldsymbol{p}}}$
 - Strong accumulation of C⁶⁺ in Low I_D
 - Weak accumulation of C⁶⁺ in High I⁻
- Trend in convection direction for r/a > 0.5
- Fluid Model 3 Radial Convection Terms

- Thermodiffusion
 ~ (1/Z)(R/L_{TZ})
- Curvature Pinch
 ~ Vq/q
- Parallel Compression
 ~ (Z/Aq²)

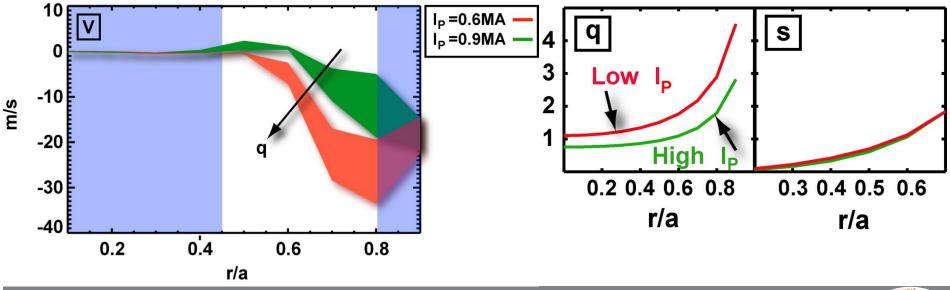


${\boldsymbol{\cdot}}$ Changing dynamics during high and low ${\boldsymbol{I}}_{{\boldsymbol{p}}}$

- Strong accumulation of C⁶⁺ in Low I_D
- Weak accumulation of C⁶⁺ in High I⁵
- Trend in convection direction for r/a > 0.5
- Fluid Model 3 Radial Convection Terms
 - Sign dependent on direction of background turbulence propagation

- Thermodiffusion Inwards ~ (1/Z)(R/L_{TZ})
- Curvature Pinch Inwards
 ~ Vq/q
- Parallel Compression Outwards
 ~ (Z/Aq²)

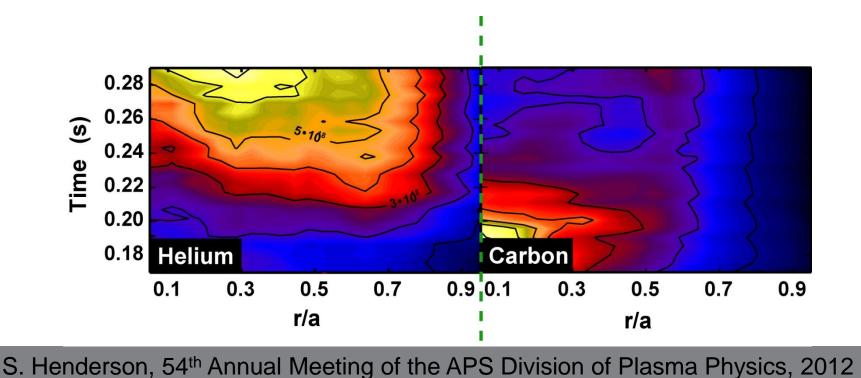
In the outer regions of the plasma, the background turbulence is rotating in the electron diamagnetic direction



${\boldsymbol{\cdot}}$ Changing dynamics during high and low ${\boldsymbol{I}}_{{\boldsymbol{p}}}$

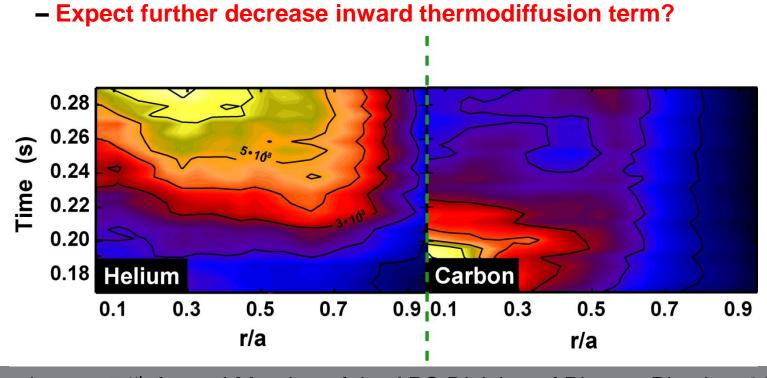
- Strong accumulation of C⁶⁺ in Low I_D
- Weak accumulation of C⁶⁺ in High I⁻_D
- Trend in convection direction for r/a > 0.5
- Fluid Model 3 Radial Convection Terms
 - Sign dependent on direction of background turbulence propagation
 - Changing q-profile suggests trend

- Thermodiffusion Inwards ~ (1/Z)(R/L_{TZ})
- Curvature Pinch Inwards
 ~ Vq/q
- Parallel Compression Outwards
 ~ (Z/Aq²)



- Impurity charge scan during the same discharge: He²⁺ (*injected*), C⁶⁺ (*intrinsic*)
 - Increasing Z indicates a weaker accumulation
 - Possible explanation is a decreasing inward thermodiffusion pinch ~ 1/Z

Ongoing Work



- Impurity charge scan during the same discharge: He²⁺ (*injected*), C⁶⁺ (*intrinsic*)
 - Increasing Z indicates a weaker accumulation
 - Possible explanation is a decreasing inward thermodiffusion pinch ~ 1/Z

Ongoing Work

Next experimental campaign will look at Nitrogen (Z=7) transport

Conclusions

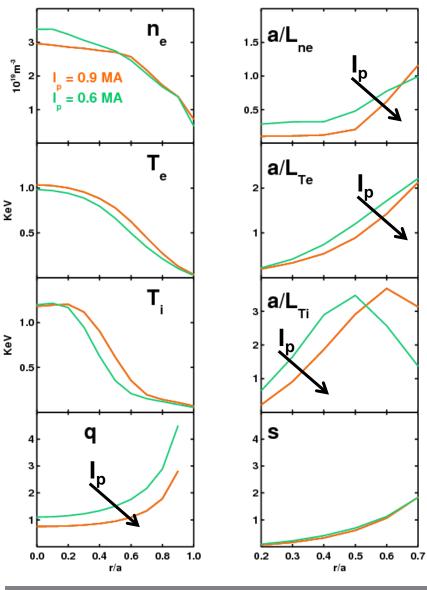
- First experimental impurity transport analysis of carbon and helium on MAST
 - H-mode impurity transport close to neoclassical (r/a < 0.8)
 - L-mode impurity transport increasingly anomalous from core to edge

- First experimental impurity transport analysis of carbon and helium on MAST
 - H-mode impurity transport close to neoclassical (r/a < 0.8)
 - L-mode impurity transport increasingly anomalous from core to edge
- MAST H-mode indicates screening of impurities
 - Neoclassical effect
 - Positive or weak plasma ion density gradient
 - Agrees with current NSTX neon transport results

- First experimental impurity transport analysis of carbon and helium on MAST
 - H-mode impurity transport close to neoclassical (r/a < 0.8)
 - L-mode impurity transport increasingly anomalous from core to edge
- MAST H-mode indicates screening of impurities
 - Neoclassical effect
 - Positive or weak plasma ion density gradient
 - Agrees with current NSTX neon transport results
- MAST L-mode shows strong and weak impurity accumulation during I_p scan at constant $B\phi$
 - Increasing $\mathbf{I}_{\mathbf{p}}$ caused an outward trend in impurity particle pinch
 - Decreasing safety factor drives an outward convection due to parallel compression

- First experimental impurity transport analysis of carbon and helium on MAST
 - H-mode impurity transport close to neoclassical (r/a < 0.8)
 - L-mode impurity transport increasingly anomalous from core to edge
- MAST H-mode indicates screening of impurities
 - Neoclassical effect
 - Positive or weak plasma ion density gradient
 - Agrees with current NSTX neon transport results
- MAST L-mode shows strong and weak impurity accumulation during I_p scan at constant $B\phi$
 - Increasing $\mathbf{I}_{\mathbf{p}}$ caused an outward trend in impurity particle pinch
 - Decreasing safety factor drives an outward convection due to parallel compression

Thanks for listening, any questions?



Appendix

Current Scan Conditions

Carbon, L-mode Current Scan^{A1}

• Increasing the current decreases the safety factor at constant B,

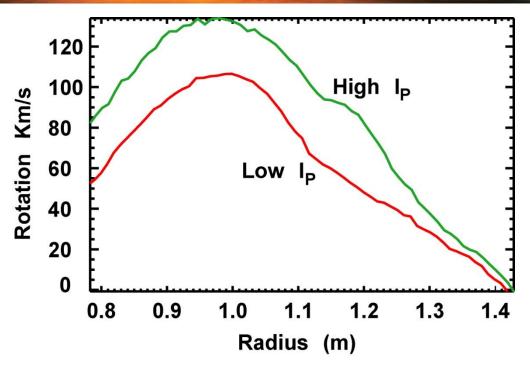
$$q_{eng} \propto \frac{B}{RI_p}$$

- Beam power has been kept constant during scan therefore $T_{\rm e}$ and $T_{\rm i}$ increase with $I_{\rm p}$

• All drive/suppresion terms are observed to decrease with increasing plasma current

• Clear increase in q-profile is observed as current is decreased

^{A1} Valovič M, Akers R, de Bock M, *etal*, Nucl. Fusion, **51**, 073045 (2011)



Current Scan Conditions

• High plasma rotation gives rise to Coriolis Compression Drift

Y Camenen, etal, Phys. Plasmas, 16, 012503

Rotation changes by less than a factor of 2

During the next experimental campaign on MAST, neutral beam power will be modified to compensate for ion temperature and rotation differences

Fluid Model Predictions

The set of fluid equations from the Weiland multi-fluid model are perturbed in impurity density, parallel velocity and temperature. From the impurity density response, the particle flux has been calculated to be ^{A2}:

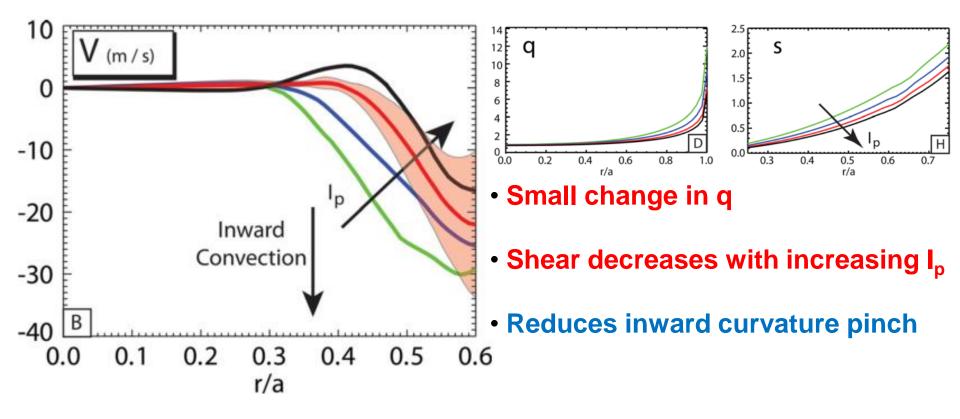
$$\frac{\Gamma_{n_{z}}}{n_{z}c_{s}} = \frac{k_{\theta}\rho_{s}\tilde{\gamma}\left|\tilde{\phi}_{k}\right|^{2}}{|N|^{2}} \begin{bmatrix} \frac{R}{2L_{n_{z}}}\left(|\tilde{\omega}|^{2} + \frac{14\tau_{z}^{*}}{3}\tilde{\omega}_{r} + \frac{55\tau_{z}^{*^{2}}}{9}\right) & \text{Curvature Pinch} \\ -\frac{R}{2L_{T_{z}}}\left(2\tau_{z}^{*}\tilde{\omega}_{r} + \frac{10\tau_{z}^{*^{2}}}{3}\right) - \langle\lambda\rangle\left(|\tilde{\omega}|^{2} + \frac{10\tau_{z}^{*}}{3}\tilde{\omega}_{r} + \frac{35\tau_{z}^{*^{2}}}{9}\right) \\ +\frac{Z}{A_{z}q_{*}^{2}|N_{1}|^{2}}\left(\tau_{z}^{*}\left(\frac{19}{3}\tilde{\omega}_{r}^{2} - \frac{1}{3}\tilde{\gamma}^{2} + \frac{100\tau_{z}^{*}}{9}\tilde{\omega}_{r} - 5\tau_{z}^{*2}\right) + 2\tilde{\omega}_{r}|\tilde{\omega}|^{2}\right) \end{bmatrix}$$
Parallel Compression Pinch

Diffusive flux

~ **R**/L_{NZ}

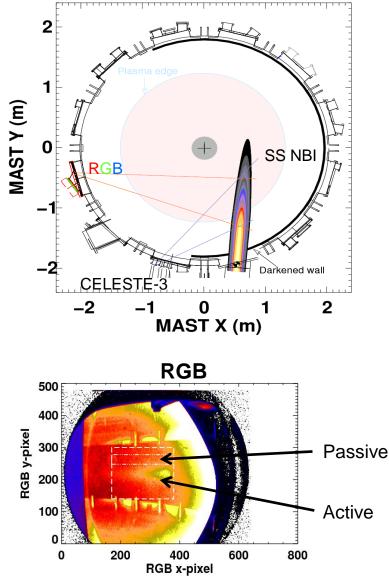
- Thermodiffusion
- Curvature Pinch
- Parallel impurity compression

- ~ $(1/Z)(R/L_{TZ})$ inwards (ETG/TEM) or outwards (ITG)
- ~ Vq/q usually inwards
- ~ (Z/Aq²) inwards (ITG) or outwards (ETG/TEM)

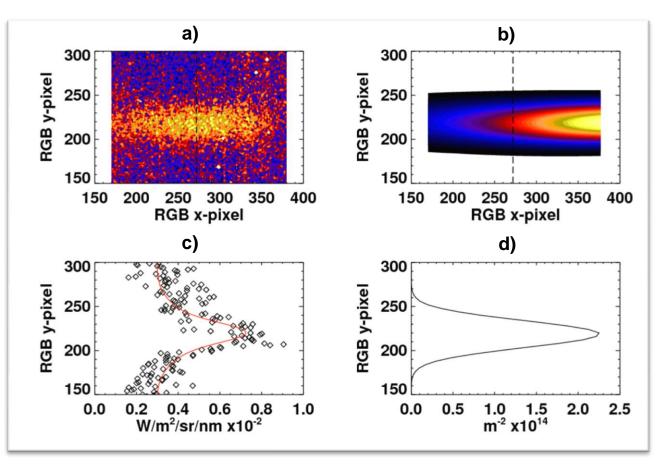

^{A2} H Nordman *etal* Plasma Phys. Cont. Fus., **53**, 105005 (2011)

Previous Alcator C-Mod Results

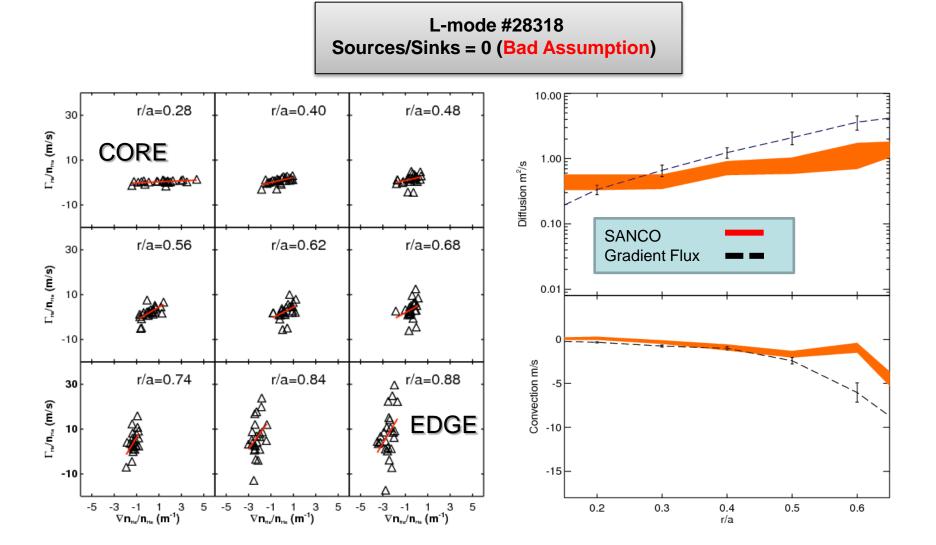
Argon gas puff experiment during an L-mode I_p-scan at constant B ^{A3}



^{A3} N Howard *etal*, Phys. Plasma, **19**, 056110 (2012)


Diagnostic Detail and Output

Carbon Raw Signal – Fit Method


- a) 2D image of raw RGB carbon channel
- b) Forward model of neutral beam density (discussed later)
- c) Vertical slice through raw RGB data
- d) Vertical slice through neutral beam density

• Assumes CX emission scales with neutral beam density

Gradient Flux Approach

