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Overview
• Motivation for studying scrape-off 

layer (SOL) ion temperatures (Ti)

• Design of RFEA probes and analysis 

techniques

• Experimental Ti measurements in 

MAST

• Conclusions

S. Elmore, 54th Annual Meeting of the APS DPP 2012, Providence, RI2



• Measure ion temperatures (Ti) in the edge of tokamak plasma

– important for determining damage on plasma facing materials from 

sputtering

Introduction and motivation
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• Few measurements of Ti

compared to Te

– Ti = Te assumed for Langmuir probe 

calculations of electron density 

(ne) and power to divertor (Pdiv)

– Ti ≠ Te in the scrape-off layer (SOL)

– Measurements in a range of 

tokamaks show Ti/Te = 2 → 10 in 

SOL
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RFEA probes on MAST
• Two RFEA probes in MAST 

SOL

– Midplane – upstream 
measurements

– Divertor – target 
measurements

– Compare Ti at two points in 
the SOL

• First Divertor RFEA in 
tokamak

– low q incident on RFEA

– sweeping divertor leg
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RFEA probe analysis
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Schematic of RFEA

• Front slit plate repels electrons since want to 
measure ions

• Grid 1 swept positive voltage
– only ions of sufficient energy overcome the 

coulomb repulsion and reach collector plate

• Grid 2 biased more negative than slit plate to 
repel secondary electrons

• Ion current measured at collector relates to 
applied discriminating ion voltage by ion 
energy distribution

• Extract Ti by fit to decaying part of the I-V 
characteristic:

• RFEA measures parallel ion distribution 
aligned along magnetic field

– Assumed to be Maxwellian
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Schematic of RFEA

• Ion current measured at collector relates to applied 
discriminating ion voltage by ion energy distribution

• Extract Ti by fit to decaying part of the I-V characteristic:

– For Vgrid1 > Vs

– where Icol is the collector current, Vgrid1 is the discriminating 
voltage, and Vs is the sheath potential

• RFEA measures parallel ion distribution 
aligned along magnetic field

– Assumed to be Maxwellian

Typical divertor I-V characteristic
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L-mode Ti upstream to target comparison
• Midplane both densities:

– Ti/Te ~ 2

• Target both densities:

– Ti ~ Te at the SOL target 

• For Ti = Te at the target 
Onion Skin Modelling (OSM) 
modelling1 predicts for 
upstream

– low density: Ti/Te = 2.4 

– high density: Ti/Te = 1.8

• Knowing both upstream and 
target Ti can be used to 
constrain models of the SOL

1A Kirk, MAST
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H-mode Ti – PNBI comparison
• Double-null plasmas:

– Ip = 900 kA

• Compare two NBI beam powers

– 1.5 MW and 3.4 MW

• Higher beam power: Ti higher 
increases over profile to high Ti

• Lower beam power: Ti lower and 
flatter profile

• Te similar for both beam powers

• Ti/Te changes with beam power:

– 1.5 MW: Ti/Te ~2

– 3.4 MW: Ti/Te ≤ 3
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H-mode Ti – PNBI comparison
• Double-null plasmas:

– Ip = 900 kA

• Compare two NBI beam powers
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H-mode target Ti/Te scaling with upstream  ν*
LCFS

• Investigate target Ti/Te scaling with 
upstream LCFS collisionality

– Measure Ti/Te 4 cm from the LCFS at 
target

• Vary collisionality using 3 double-null 
H-mode plasmas:

– Ip = 600 kA; PNBI = 3.4 MW

– Ip = 900 kA; PNBI = 1.5 MW

– Ip = 900 kA; PNBI = 3.4 MW

• As expected Ti/Te
tgt

decreases with 
increasing ν*

LCFS

– Stronger ions-electrons coupling 
reduces Ti/Te

• Ti and Te measurements at target 
currently being investigated by 
B2SOLPS for comparison1

1 E. Havlickova
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Target Average ELM Ti Measurements
• Average ELM Ti measured using slow voltage sweep (40 Hz) during ELMy H-mode

• I-V characteristic is composite of many similar type III ELMs arriving at the target:

– IELM
peak at divertor RFEA plotted against applied Vgrid1 at tELM
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Target Average ELM Ti Measurements
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• Average type III ELM Ti measured in 

range ΔRLCFS
tgt =  5 - 7 cm

• Ti further from LCFS ΔRLCFS
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Conclusion
• Measurements at divertor target of Ti by RFEA in range of plasmas:

– L-mode, inter-ELM H-mode and average ELM measurements

• L-mode:

– upstream and target measurement comparison confirms OSM predictions 

for Ti/Te ~ 2 when Ti = Te at target

• H-mode:

– Ti/Te shown to increase with increasing PNBI in one plasma scenario

– Ti/Te scales with upstream LCFS collisionality as expected

– Comparison with modelling work on going

• Average ELM Ti:

– Temperature falls off with distance

– 30 eV < Ti < 60 eV, 5 - 9 cm from LCFS at target

• Flow effects are being investigated to give validate Ti target measurements
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Effect of flows
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u
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0
• No flows:

– RFEA measures the same distribution both 
sides 

– Ti is the width of the Maxwellian distribution

• SOL flow:
– shifted Maxwellian distribution

– RFEA facing flow will see higher end of 
distribution, u > 0

– RFEA backing flow sees remaining 
distribution

V

In
(I

)

Up

Down

• Ti value measured in no flow
– equal for both sides

– Slope = 1/Ti

• With SOL flows
– ‘up’ side of RFEA measures shallower slope 

– Ti higher on ‘up’ side to ‘down’ side

• Divertor RFEA expected to measure too 
high since facing flow

• Comparison with modelling1 of SOL flows will be investigated to compare Ti measured by 
RFEA to simulated Ti

1 J. Gunn, CEA


