### Divertor ion temperature measurements on MAST by retarding field energy analyser

#### By Sarah Elmore<sup>1,2</sup>

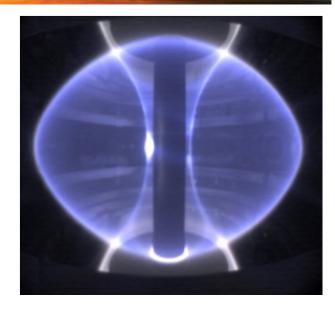
with

## S. Allan<sup>1</sup>, A. Kirk<sup>1</sup>, J. Harrison<sup>1</sup>, A. J. Thornton<sup>1</sup>, J. W. Bradley<sup>2</sup>, P. Tamain<sup>3</sup>, M. Kočan<sup>4</sup> and the MAST Team<sup>1</sup>

<sup>1</sup>EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB, UK <sup>2</sup>Department of Electrical Engineering and Electronics, University of Liverpool, Brownlow Hill, Liverpool, L69 3GJ, UK <sup>3</sup>Association Euratom-CEA, CEA/DSM/IRFM, CEA-Cadarache, F-13108 St Paul-lez-Durance Cedex, France <sup>4</sup>Max-Planck Institut für Plasmaphysik, EURATOM Association, Garching, Germany

#### sarah.elmore@ccfe.ac.uk

CCFE is the fusion research arm of the United Kingdom Atomic Energy Authority







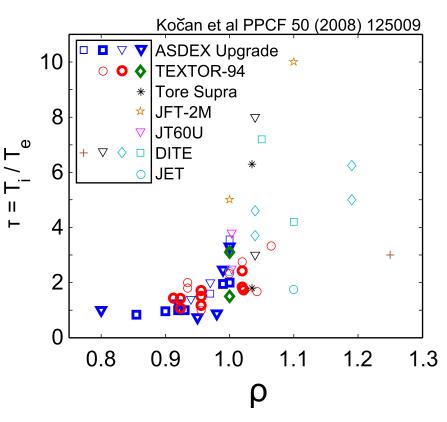

#### **Overview**

- Motivation for studying scrape-off layer (SOL) ion temperatures (T<sub>i</sub>)
- Design of RFEA probes and analysis techniques



- Experimental T<sub>i</sub> measurements in MAST
- Conclusions

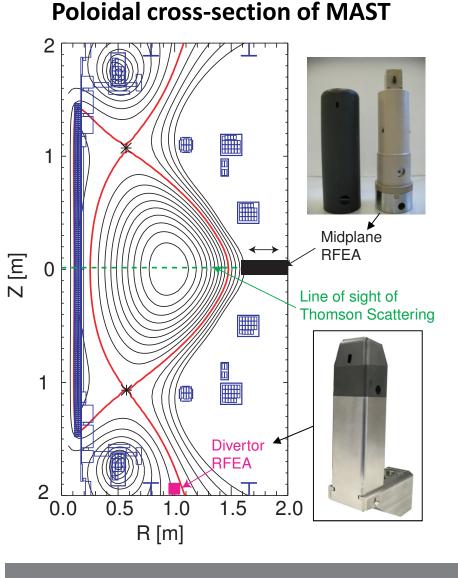





- Measure ion temperatures (T<sub>i</sub>) in the edge of tokamak plasma
  - important for determining damage on plasma facing materials from sputtering
- Few measurements of T<sub>i</sub> compared to T<sub>e</sub>
  - T<sub>i</sub> = T<sub>e</sub> assumed for Langmuir probe calculations of electron density (n<sub>e</sub>) and power to divertor (P<sub>div</sub>)





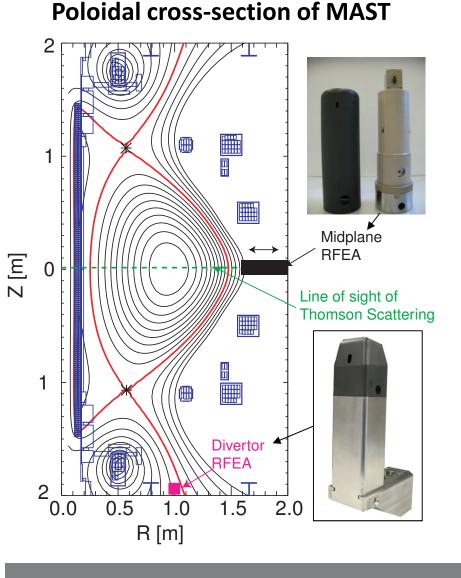

- Measure ion temperatures (T<sub>i</sub>) in the edge of tokamak plasma
  - important for determining damage on plasma facing materials from sputtering
- Few measurements of T<sub>i</sub> compared to T<sub>e</sub>
  - T<sub>i</sub> = T<sub>e</sub> assumed for Langmuir probe calculations of electron density (n<sub>e</sub>) and power to divertor (P<sub>div</sub>)
  - T<sub>i</sub> ≠ T<sub>e</sub> in the scrape-off layer (SOL)
  - − Measurements in a range of tokamaks show  $T_i/T_e = 2 \rightarrow 10$  in SOL







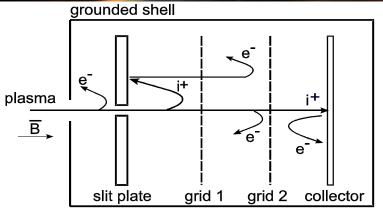
#### **RFEA** probes on MAST




- Two RFEA probes in MAST SOL
  - Midplane upstream measurements
  - Divertor target measurements
  - Compare T<sub>i</sub> at two points in the SOL





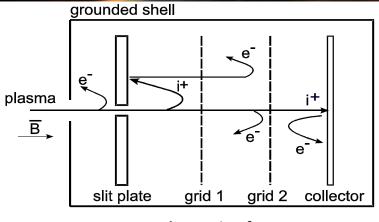

#### **RFEA** probes on MAST



- Two RFEA probes in MAST SOL
  - Midplane upstream measurements
  - Divertor target measurements
  - Compare T<sub>i</sub> at two points in the SOL
- First Divertor RFEA in tokamak
  - low q incident on RFEA
  - sweeping divertor leg







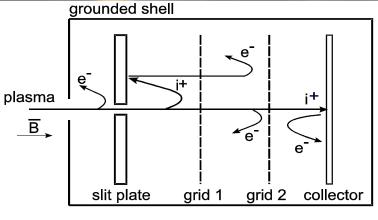

**Schematic of RFEA** 

- RFEA measures parallel ion distribution aligned along magnetic field
  - Assumed to be Maxwellian








Schematic of RFEA

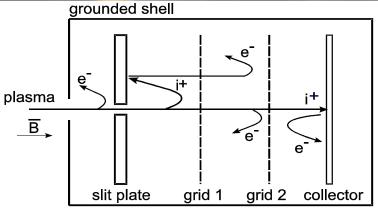
- RFEA measures parallel ion distribution aligned along magnetic field
  - Assumed to be Maxwellian

• Front slit plate repels electrons since want to measure ions








#### Schematic of RFEA

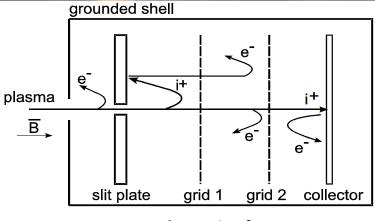
- RFEA measures parallel ion distribution aligned along magnetic field
  - Assumed to be Maxwellian

- Front slit plate repels electrons since want to measure ions
- Grid 1 swept to positive voltage of 200 V every 1 ms
  - only ions of sufficient energy overcome the coulomb repulsion and reach collector plate








#### Schematic of RFEA

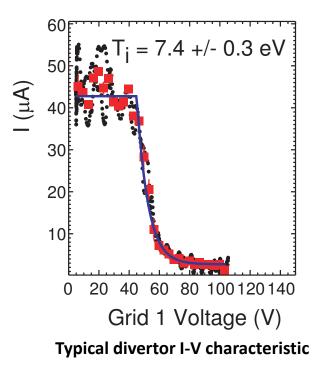
- RFEA measures parallel ion distribution aligned along magnetic field
  - Assumed to be Maxwellian

- Front slit plate repels electrons since want to measure ions
- Grid 1 swept to positive voltage of 200 V every 1 ms
  - only ions of sufficient energy overcome the coulomb repulsion and reach collector plate
- Grid 2 biased more negatively than slit plate (-150 V) to repel secondary electrons





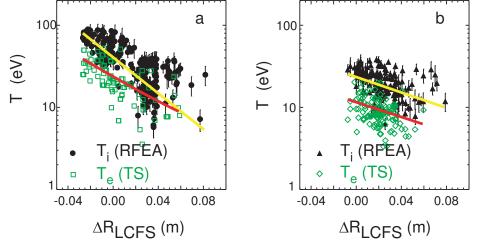



Schematic of RFEA

- RFEA measures parallel ion distribution aligned along magnetic field
  - Assumed to be Maxwellian

- Ion current measured at collector relates to applied discriminating ion voltage by ion energy distribution
- Extract T<sub>i</sub> by fit to decaying part of the I-V characteristic:

$$I_{col} = I_0 \exp\left[\frac{-Z_i}{T_i} \left(V_{grid1} - |V_s|\right)\right]$$


- For  $V_{grid1} > V_{s}$
- where  $I_{col}$  is the collector current,  $V_{grid1}$  is the discriminating voltage, and V<sub>s</sub> is the sheath potential

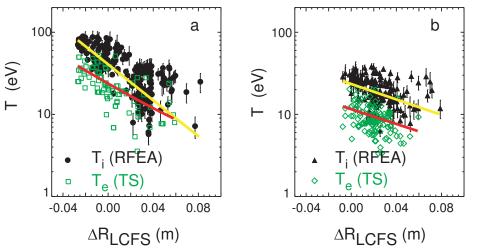




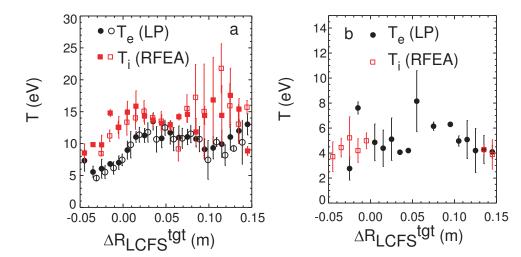
• Midplane both densities:

$$- T_{i}/T_{e} \sim 2$$




(a) Low and (b) high density  $\rm T_i$  and  $\rm T_e$  (TS) at the midplane




S. Elmore et al 2012 PPCF 54 065001

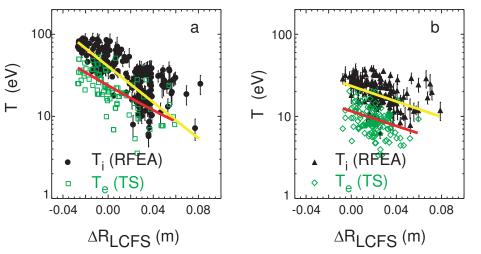
S. Elmore,  $54^{th}$  Annual Meeting of the APS DPP 2012, Providence, RI

- Midplane both densities:
  - $T_{i}/T_{e} \sim 2$
- Target both densities:
  - $-T_i \sim T_e$  at the SOL target

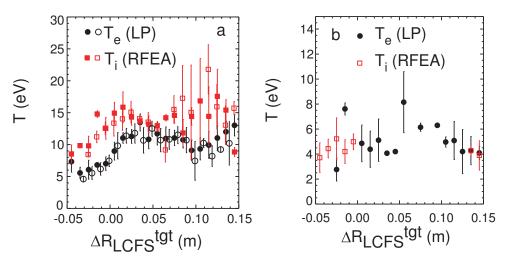







(a) Low and (b) high density  $\rm T_i$  and  $\rm T_e$  (LP) at the target

S. Elmore et al 2012 PPCF 54 065001




S. Elmore,  $54^{th}$  Annual Meeting of the APS DPP 2012, Providence, RI

- Midplane both densities:
  - $T_{i}/T_{e} \sim 2$
- Target both densities:
   T<sub>i</sub> ~ T<sub>e</sub> at the SOL target
- For T<sub>i</sub> = T<sub>e</sub> at the target Onion Skin Modelling (OSM) modelling<sup>1</sup> predicts for upstream
  - low density:  $T_i/T_e = 2.4$
  - high density:  $T_i/T_e = 1.8$

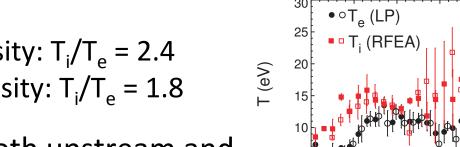


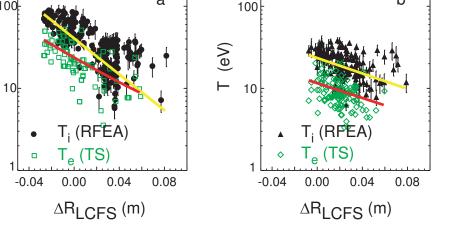




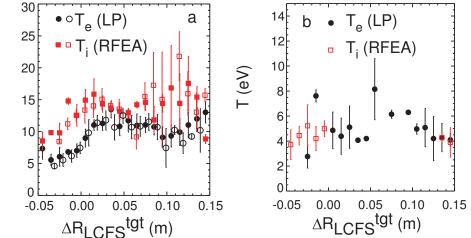
(a) Low and (b) high density  $\rm T_i$  and  $\rm T_e$  (LP) at the target

<sup>1</sup>A Kirk et al 2004 PPCF 46 1591 S. Elmore et al 2012 PPCF 54 065001





S. Elmore, 54<sup>th</sup> Annual Meeting of the APS DPP 2012, Providence, RI

100


(eV)

- Midplane both densities:
  - T<sub>i</sub>/T<sub>e</sub> ~ 2
- Target both densities:  $-T_i \sim T_\rho$  at the SOL target
- For T<sub>i</sub> = T<sub>e</sub> at the target Onion Skin Modelling (OSM) modelling<sup>1</sup> predicts for upstream
  - low density:  $T_i/T_e = 2.4$
  - high density:  $T_i/T_e = 1.8$
- Knowing both upstream and target T<sub>i</sub> can be used to constrain models of the SOL

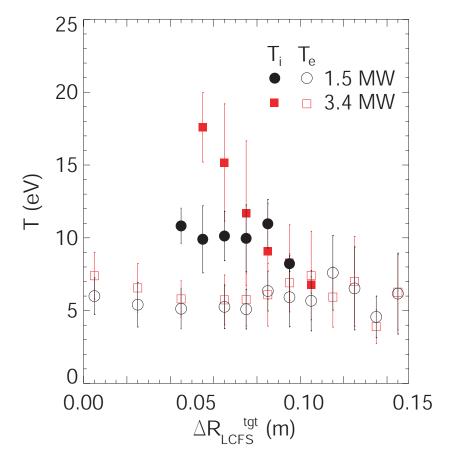








(a) Low and (b) high density T<sub>i</sub> and T<sub>o</sub> (LP) at the target


<sup>1</sup>A Kirk et al 2004 PPCF 46 1591 S. Elmore et al 2012 PPCF 54 065001



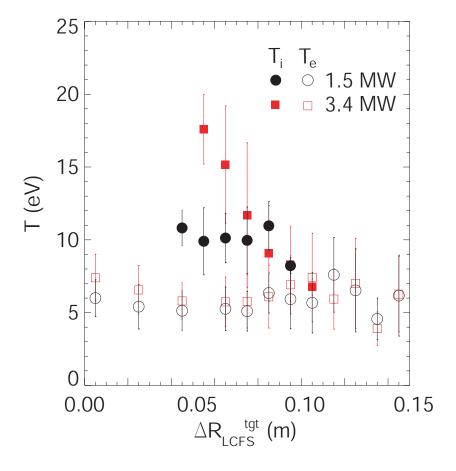
S. Elmore, 54<sup>th</sup> Annual Meeting of the APS DPP 2012, Providence, RI



#### H-mode T<sub>i</sub> – P<sub>NBI</sub> comparison



Double-null plasmas:


 $-I_{p} = 900 \text{ kA}$ 

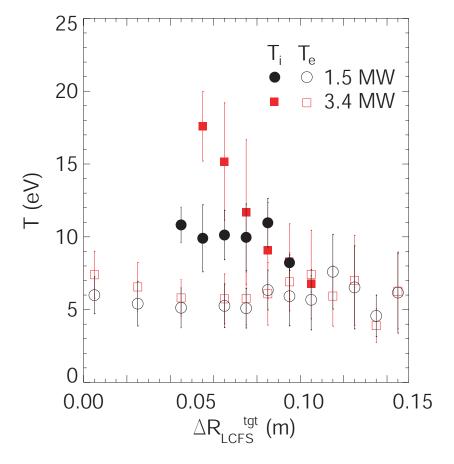
- Compare two NBI beam powers
  - 1.5 MW and 3.4 MW

Profile of T<sub>i</sub> and T<sub>e</sub> measured at the divertor target in the SOL



#### H-mode T<sub>i</sub> – P<sub>NBI</sub> comparison




Profile of  $T_i$  and  $T_e$  measured at the divertor target in the SOL

- Double-null plasmas:
  - $-I_{p} = 900 \text{ kA}$
- Compare two NBI beam powers
   1.5 MW and 3.4 MW
- Higher beam power: T<sub>i</sub> higher with increasing T<sub>i</sub>/T<sub>e</sub>
- Lower beam power: T<sub>i</sub> lower and flatter profile





#### H-mode T<sub>i</sub> – P<sub>NBI</sub> comparison



Profile of T<sub>i</sub> and T<sub>e</sub> measured at the divertor target in the SOL

• Double-null plasmas:

 $- I_{p} = 900 \text{ kA}$ 

- Compare two NBI beam powers
   1.5 MW and 3.4 MW
- Higher beam power:  $T_i$  higher with increasing  $T_i/T_e$
- Lower beam power: T<sub>i</sub> lower and flatter profile
- T<sub>e</sub> similar for both beam powers
- $T_i/T_e$  changes with beam power:

1.5 MW: 
$$T_i/T_e \sim 2$$
  
3.4 MW:  $T_i/T_e \leq 3$ 

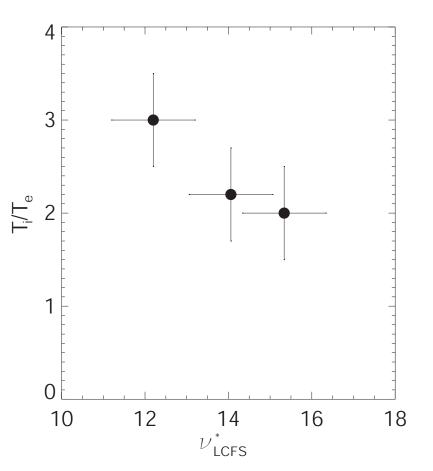




- Investigate target T<sub>i</sub>/T<sub>e</sub> scaling with upstream LCFS collisionality
  - Measure T<sub>i</sub>/T<sub>e</sub> 4 cm from the LCFS at target



S. Elmore,  $54^{th}$  Annual Meeting of the APS DPP 2012, Providence, RI


## Sector H-mode target $T_i/T_e$ scaling with upstream $v_{LCFS}^*$

- Investigate target T<sub>i</sub>/T<sub>e</sub> scaling with upstream LCFS collisionality
  - Measure T<sub>i</sub>/T<sub>e</sub> 4 cm from the LCFS at target
- Vary collisionality using 3 double-null H-mode plasmas:
  - I<sub>p</sub> = 600 kA; P<sub>NBI</sub> = 3.4 MW
  - I<sub>p</sub> = 900 kA; P<sub>NBI</sub> = 1.5 MW
  - I<sub>p</sub> = 900 kA; P<sub>NBI</sub> = 3.4 MW

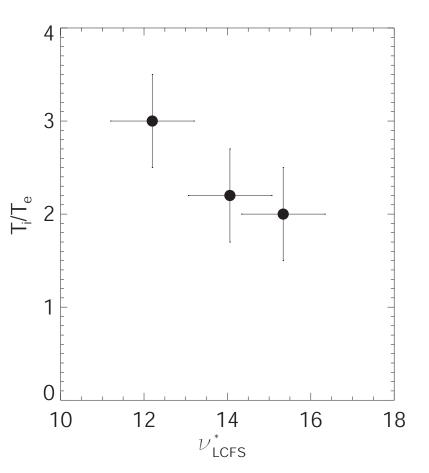


## Sector H-mode target $T_i/T_e$ scaling with upstream $v_{LCFS}^*$

- Investigate target T<sub>i</sub>/T<sub>e</sub> scaling with upstream LCFS collisionality
  - Measure T<sub>i</sub>/T<sub>e</sub> 4 cm from the LCFS at target
- Vary collisionality using 3 double-null H-mode plasmas:
  - I<sub>p</sub> = 600 kA; P<sub>NBI</sub> = 3.4 MW
  - I<sub>p</sub> = 900 kA; P<sub>NBI</sub> = 1.5 MW
  - I<sub>p</sub> = 900 kA; P<sub>NBI</sub> = 3.4 MW
- As expected  $T_i/T_e^{tgt}$  decreases with increasing  $v_{LCFS}^*$ 
  - Stronger ions-electrons coupling reduces T<sub>i</sub>/T<sub>e</sub>



 $T_i/T_e$  at the target as a function of collisionality at the upstream LCFS



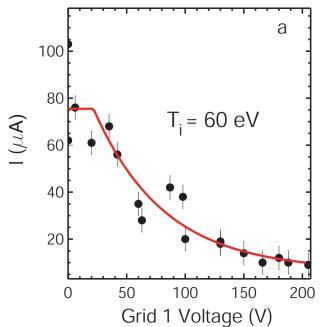

## Sector H-mode target $T_i/T_e$ scaling with upstream $v_{LCFS}^*$

- Investigate target T<sub>i</sub>/T<sub>e</sub> scaling with upstream LCFS collisionality
  - Measure T<sub>i</sub>/T<sub>e</sub> 4 cm from the LCFS at target
- Vary collisionality using 3 double-null H-mode plasmas:
  - I<sub>p</sub> = 600 kA; P<sub>NBI</sub> = 3.4 MW

- As expected  $T_i/T_e^{tgt}$  decreases with increasing  $v_{LCFS}^*$ 
  - Stronger ions-electrons coupling reduces T<sub>i</sub>/T<sub>e</sub>
- T<sub>i</sub> and T<sub>e</sub> measurements at target currently being investigated by B2SOLPS for comparison<sup>1</sup>

<sup>1</sup>E. Havlickova

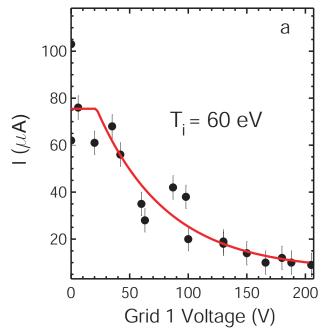



 $T_i/T_e$  at the target as a function of collisionality at the upstream LCFS



- Average ELM T<sub>i</sub> measured using slow voltage sweep (40 Hz) during ELMy H-mode
- I-V characteristic is composite of many similar type III ELMs arriving at the target:
  - I<sub>ELM</sub><sup>peak</sup> at divertor RFEA plotted against applied V<sub>grid1</sub> at t<sub>ELM</sub>



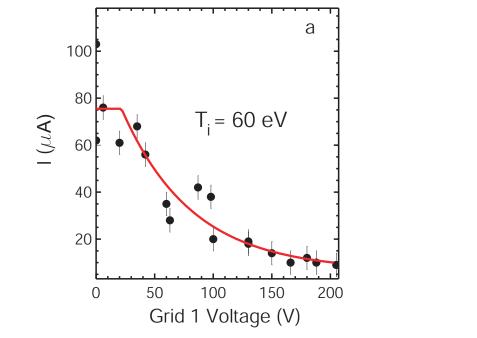

- Average ELM T<sub>i</sub> measured using slow voltage sweep (40 Hz) during ELMy H-mode
- I-V characteristic is composite of many similar type III ELMs arriving at the target:
  - I<sub>ELM</sub><sup>peak</sup> at divertor RFEA plotted against applied V<sub>grid1</sub> at t<sub>ELM</sub>

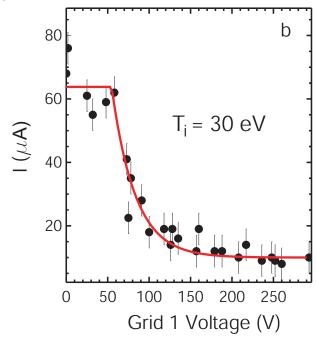


• Average type III ELM  $T_i$  measured in range  $\Delta R_{LCFS}^{tgt} = 5 - 7 \text{ cm}$ 



- Average ELM T<sub>i</sub> measured using slow voltage sweep (40 Hz) during ELMy H-mode
- I-V characteristic is composite of many similar type III ELMs arriving at the target:
  - I<sub>ELM</sub><sup>peak</sup> at divertor RFEA plotted against applied V<sub>grid1</sub> at t<sub>ELM</sub>





 $\begin{array}{c}
80 \\
60 \\
60 \\
40 \\
20 \\
20 \\
0 50 100 150 200 250 \\
Grid 1 Voltage (V)
\end{array}$ 

- Average type III ELM  $T_i$  measured in range  $\Delta R_{LCFS}^{tgt} = 5 7$  cm
- $T_i$  further from LCFS  $\Delta R_{LCFS}^{tgt} = 8 9 \text{ cm}$



- Average ELM T<sub>i</sub> measured using slow voltage sweep (40 Hz) during ELMy H-mode
- I-V characteristic is composite of many similar type III ELMs arriving at the target:
  - I<sub>ELM</sub><sup>peak</sup> at divertor RFEA plotted against applied V<sub>grid1</sub> at t<sub>ELM</sub>





• Average type III ELM  $T_i$  measured in range  $\Delta R_{LCFS}^{tgt} = 5 - 7$  cm •  $T_i$  further from LCFS  $\Delta R_{LCFS}^{tgt} = 8 - 9 \text{ cm}$ 

UNIVERSITY OF LIVERPOOL

See expected cooling with  $\Delta R_{LCFS}{}^{tgt}$ 



- Measurements at divertor target of T<sub>i</sub> by RFEA in range of plasmas:
  - L-mode, inter-ELM H-mode and average ELM measurements





- Measurements at divertor target of T<sub>i</sub> by RFEA in range of plasmas:
  - L-mode, inter-ELM H-mode and average ELM measurements
- L-mode:
  - upstream and target measurement comparison confirms OSM predictions for  $T_i/T_e \sim 2$  when  $T_i = T_e$  at target





- Measurements at divertor target of T<sub>i</sub> by RFEA in range of plasmas:
  - L-mode, inter-ELM H-mode and average ELM measurements
- L-mode:
  - upstream and target measurement comparison confirms OSM predictions for  $T_i/T_e \sim 2$  when  $T_i = T_e$  at target
- H-mode:
  - $T_i/T_e$  shown to increase with increasing  $P_{NBI}$  in one plasma scenario
  - $T_i/T_e$  scales with upstream LCFS collisionality as expected
  - Comparison with modelling work on going





- Measurements at divertor target of T<sub>i</sub> by RFEA in range of plasmas:
  - L-mode, inter-ELM H-mode and average ELM measurements
- L-mode:
  - upstream and target measurement comparison confirms OSM predictions for  $T_i/T_e \sim 2$  when  $T_i = T_e$  at target
- H-mode:
  - $T_i/T_e$  shown to increase with increasing  $P_{NBI}$  in one plasma scenario
  - $T_i/T_e$  scales with upstream LCFS collisionality as expected
  - Comparison with modelling work on going
- Average ELM T<sub>i</sub>:
  - Temperature falls off with distance
  - 30 eV < T<sub>i</sub> < 60 eV, 5 9 cm from LCFS at target

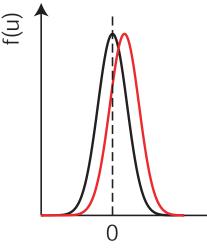




- Measurements at divertor target of T<sub>i</sub> by RFEA in range of plasmas:
  - L-mode, inter-ELM H-mode and average ELM measurements
- L-mode:
  - upstream and target measurement comparison confirms OSM predictions for  $T_i/T_e \sim 2$  when  $T_i = T_e$  at target
- H-mode:
  - $T_i/T_e$  shown to increase with increasing P<sub>NBI</sub> in one plasma scenario
  - $T_i/T_e$  scales with upstream LCFS collisionality as expected
  - Comparison with modelling work on going
- Average ELM T<sub>i</sub>:
  - Temperature falls off with distance
  - 30 eV < T<sub>i</sub> < 60 eV, 5 9 cm from LCFS at target
- Flow effects are being investigated to give valid T<sub>i</sub> target measurements



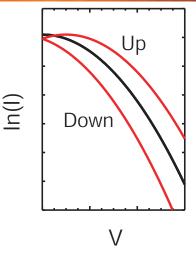



# Appendix



15

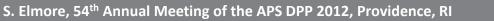
#### **Effect of flows**






- No flows:
  - RFEA measures the same distribution both sides
  - T<sub>i</sub> is the width of the Maxwellian distribution

U


- SOL flow:
  - shifted Maxwellian distribution
  - RFEA facing flow will see higher end of distribution, u > 0
  - RFEA backing flow sees remaining distribution



- T<sub>i</sub> value measured in no flow
  - equal for both sides
  - Slope =  $1/T_i$
- With SOL flows
  - 'up' side of RFEA measures shallower slope
  - T<sub>i</sub> higher on 'up' side to 'down' side
- Divertor RFEA expected to measure too high since facing flow

#### Comparison with modelling<sup>1</sup> of SOL flows will be investigated to compare T<sub>i</sub> measured by RFEA to simulated T<sub>i</sub>

<sup>1</sup> J. Gunn, CEA



