

Supported by

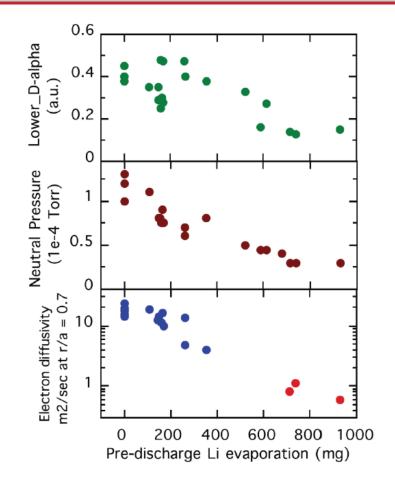
The Effects of Contamination by Residual Gases in NSTX on D Uptake and Retention in Li Films

Coll of Wm & Mary Columbia U CompX **General Atomics** FIU INL Johns Hopkins U LANL LLNL Lodestar MIT Lehigh U **Nova Photonics** ORNL PPPL Princeton U Purdue U SNI Think Tank. Inc. **UC Davis UC** Irvine UCLA UCSD **U** Colorado **U Illinois U** Maryland **U** Rochester **U** Tennessee **U** Tulsa **U** Washington **U Wisconsin** X Science LLC

Angela M. Capece

O. Fasoranti, R. Sullenberger, R. Norval, B.E. Koel, C.H. Skinner, R. Kaita, and the NSTX Research Team

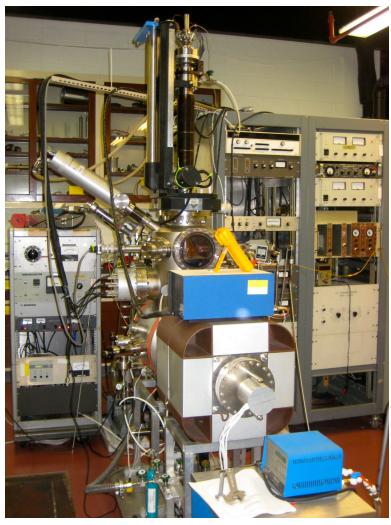
54th Annual Meeting of the APS Division of Plasma Physics Providence, RI October 30, 2012


Culham Sci Ctr York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U NIFS Niigata U **U** Tokyo JAEA Inst for Nucl Res. Kiev loffe Inst TRINITI Chonbuk Natl U NFRI KAIST POSTECH Seoul Natl U ASIPP CIEMAT FOM Inst DIFFER ENEA. Frascati CEA. Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep

Office of

Science

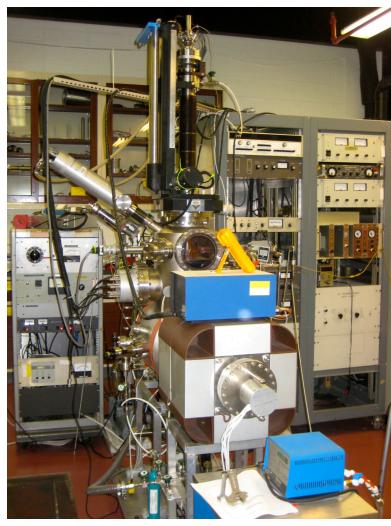
Surface Science Analyses of Lithiated PFCs is Motivated by Improved Plasma Performance


- Liquid metals considered for PFCs
 - Advantages of liquid metals:
 - No neutron damage
 - No erosion
 - No thermal fatigue
- Li improves plasma performance and confinement
 - Increasing Li doses cause reduction in:
 - Divertor recycling
 - Edge neutral density
 - Electron transport
 - Li concentration in plasma core is low
 - Liquid Li resilient against high heat flux

R. Maingi et al., Nucl. Fusion, 52 (2012) 083001

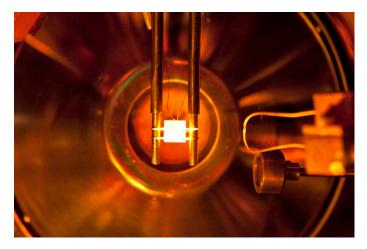
PP8.00007: The effect of progressively increasing lithium coatings on plasma performance, and the underlying role of collisionality, in the NSTX

Surface Science Approach to Understanding D Retention at the Plasma-Surface Interface



Surface science chamber at PPPL's Surface Science & Technology Lab

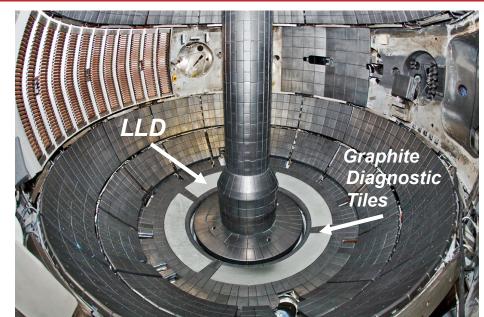
- D retention in lithiated PFCs is key component to improved plasma performance
- Surface science approach seeks to understand D retention at the plasma-surface interface
- Key variables affecting chemistry at the surface:
 - Pressure
 - Temperature
 - Composition (Mo, Li, D⁺, residual gases, etc.)
- Must isolate the effects of chemistry, plasma, temperature, etc.
- Surface science experiments allow us to independently control all variables --- This is something we cannot achieve in the tokamak!



Surface Science Approach to Understanding D Retention at the Plasma-Surface Interface

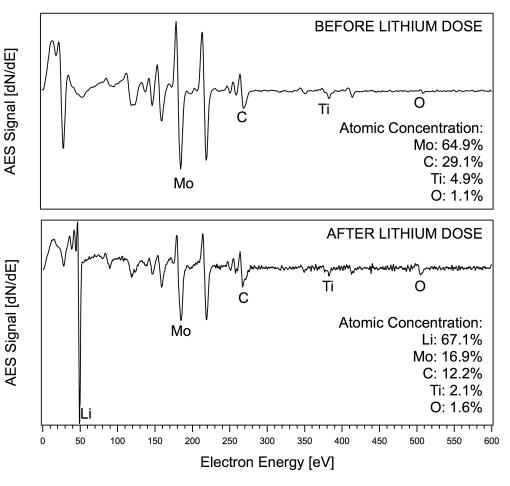
Surface science chamber at PPPL's Surface Science & Technology Lab

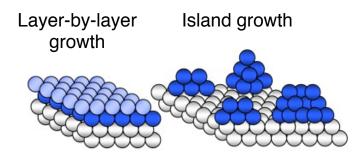
- Surface Science Techniques:
 - Auger Electron Spectroscopy (AES)
 - Chemical composition (oxidation state)
 - Temperature Programmed Desorption (TPD)
 - Desorption products
 - Amount of material retained
 - Binding energy
- Current Goal: To isolate the effects of C and O contaminants on D retention in Li coated PFCs


Li coated TZM being heated during TPD

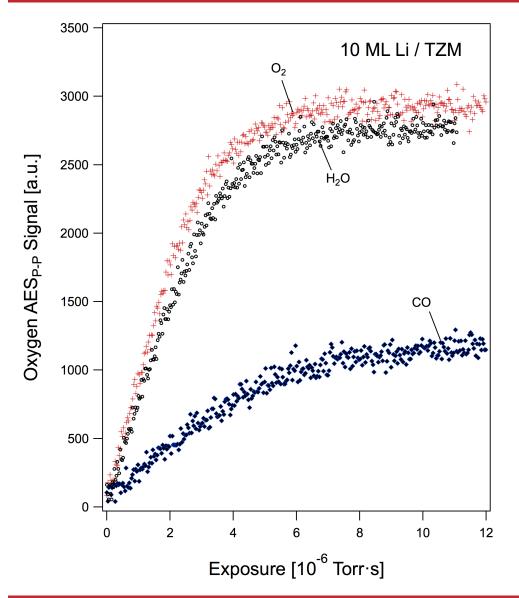
Study of Mo as a Substrate Material is Motivated by LLD and the move to all-metal PFC with TZM Tiles

 Liquid Lithium Divertor (LLD) installed in NSTX in 2010 with porous Mo plasma-facing surface


- Mo (TZM) tile installed on inner divertor in 2011
- First step toward future allmetal PFC with TZM tiles

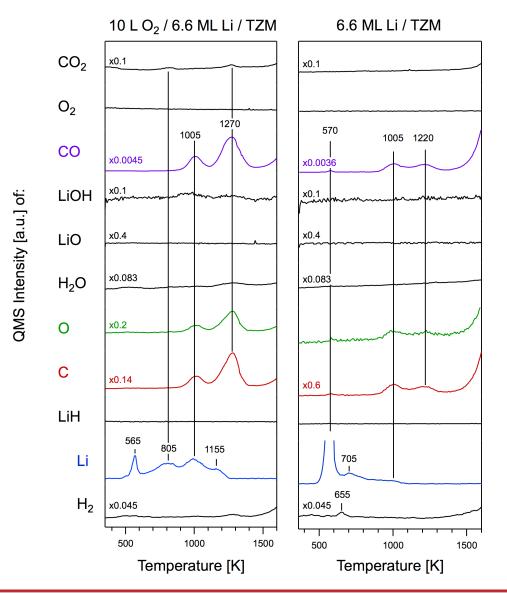


Composition and Uniformity of Li Films on TZM is Important

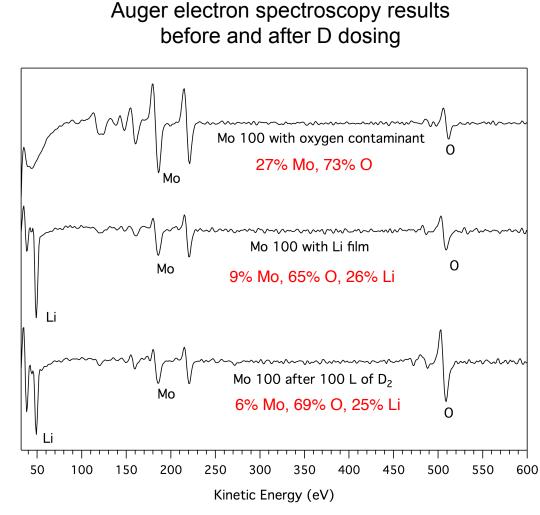


J.G. Chen et al., Surf. Sci. Reports, 63 (2008) 201.

- Auger electron spectroscopy of 6.6
 ML Li film shows Mo signal not attenuated
- TZM surface may not have uniform coating
- D may also react with Mo substrate
- TZM surface may behave differently than plasma-sprayed Mo

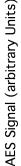

Li Film Oxidizes in 100 s at 10⁻⁷ Torr of Water Vapor

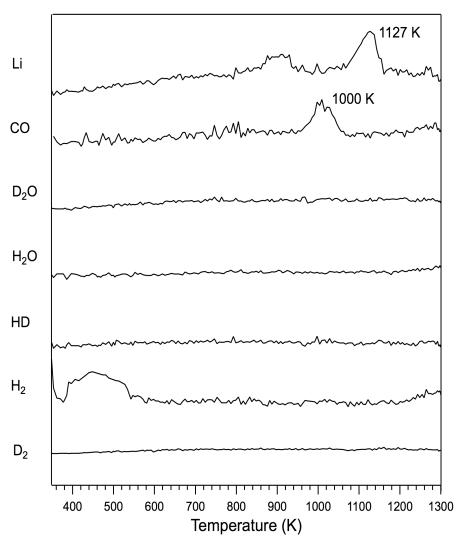
- Uptake curves show that H_2O and O_2 oxidize the surface at the same rate.
- Typical NSTX intershot pressures are ~10⁻⁷ Torr.
- PFC coating will oxidize in this environment. Saturation will occur in 100 s at 10⁻⁷ Torr of water vapor.
- Plasma sees mixed material, not pure Li coating



Temperature Programmed Desorption Yields Information on Surface Chemistry

- Multilayer Li desorbs from TZM at 570 K
- Oxygen holds Li on the surface as Li₂O
- Oxide decomposes at 1000 K to liberate Li and O
 - O reacts with C to form CO and CO_2
- Carbon contamination in TZM adds complexity to the chemistry


D Exposure to Li-Coated Mo Single Crystal Increases Oxygen Surface Coverage


- Understanding D uptake process can help to optimize it
- Presently unknown if C and O contamination helps or hinders D uptake
- Study Mo crystal to reduce C contamination and understand TZM results
- Mo crystal –solid material where crystal lattice of entire sample is continuous and unbroken with no grain boundaries
- Oxygen initially present on the surface
- D exposure increase oxygen coverage on the surface – water contamination or real effect?

See also:

PP8.00034: Deuterium Retention via Highly Oxygenated Lithium Coatings

Main Species Evolved from Li-Coated Mo Surface After D Exposure include H₂, Li, and CO

10 L of D on Li/Mo 100

- Only H₂, CO, and Li observed to desorb
- Li on TZM with O contamination desorbs at 1000 K
- For D/Li/Mo system, Li desorbs at 1127 K
 - Enhanced Li bond to surface?
- Broad H₂ peak expected at low temperatures based on other studies
- Further work to be conducted on:
 - D/Mo system (as benchmark)
 - D/Li/Mo system (to clarify results)
 - D/Li/Mo with controlled amounts of C and O to determine effect of these species on retention

Conclusions and Future Work

- D retention in lithiated PFCs is key component to improved plasma performance
 - Understanding D uptake process can help to optimize it
- Tokamak plasma will interact with mixed material at the plasma-surface interface
 - Plasma may see Li metal/Li oxide and substrate material
 - Li Film oxidizes in 100 s at 10⁻⁷ Torr of water vapor
 - Lithium coating on TZM may not be uniform
- Oxygen holds Li on the surface as Li₂O
 - Li metal desorbs at 570 K; Li oxide decomposes at 1000 K
- D Exposure to Li-coated Mo Increases Oxygen Surface Coverage
- Further study is needed to determine the role of C and O in D uptake/retention