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Abstract

The Titanium-Zirconium-Molybdenum alloy TZM has previously been 

used as a metallic plasma-facing component in Alcator C-Mod is being 

considered for use in NSTX-Upgrade.  The time evolution of lithium 

(Li) coatings on TZM are studied in Magnum-PSI, a linear plasma 

device capable of ion fluxes up to 1025 m-2s-1 at electron temperatures 

< 5 eV.  A series of 5 s exposures to a D+ plasma were run on a bare 

TZM sample then repeated after an evaporation of 100 nm of Li.  The 

temporal and spatial variation of neutral Li and oxygen (O) radiation 
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temporal and spatial variation of neutral Li and oxygen (O) radiation 

were monitored using optical emission spectroscopy (OES) and a fast 

camera with a Li-I (671 nm) filter.  The O-I (777 nm) line intensity 

decreased during discharges while the Li-I line intensity increased.  

The ionization mean free path (MFP) of Li was calculated and 

validations against the ADAS collisional-radiative model (CRM) will be 

reported.  Separate measurements of physical sputtering rates with a 

100-1000 eV D+ ion beam incident on Li-coated TZM were also 

obtained and compared with theoretical predictions.
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Local material migration in the divertor occurs at fast gross 

rate but slower net rate
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Adapted from P. Stangeby, PSI 2012
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Net erosion rates have been explored over a limited 

parameter range

Experiment Ion Flux 

(m-2 s-1)

Magnetic

Incidence

Ion 

species

Target 

Material

Result

PISCES-B 8*1021 normal 

(90°)

D+, He+ Li/O mixed

material

Complete removal 

of O layer after

~400s (unknown 

thickness)1

DIII-D 6*1023 grazing D+, C+ Mo ~0.8 nm/s net (1.4 
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1. R. Doerner et al., JNM 2001

2. P. Stangeby et al., APS 2012

3. L. Aho-Mantila et al., JNM 2011

DIII-D 

(DiMES)

6*1023 grazing

angle

D+, C+ Mo ~0.8 nm/s net (1.4 

nm/s gross) 

erosion rate2

ASDEX-U 

(13C Injection)

1-5*1023 grazing

angle

D+ Carbon Re-deposition 

fraction ~0.28 

(forward field), 

~0.14 (reverse)3



3D Monte Carlo codes have had limited success verifying net

erosion rates in tokamaks

WBC/REDEP

Net Mo erosion in C-Mod: 10x 

higher than simulation 
(J.N. Brooks, JNM 2011)

Mo deposition profile in DIII-D

D
a
ta

ERO/SOLPS
13C deposition profile in 

ASDEX-U
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Motivates experiments with divertor plasma simulators with 

better diagnostic access

• Magnum-PSI
– Γ < 1024 m-2s-1 D+, Te < 2 eV, ne < 5*1020 m-3

– 5 s pulses, B~1 T (> 60 s, 2.5T superconducting- coming 2013)

– Normal incidence: no magnetic pre-sheath

– Evaporative Li coatings applied in-situ, calibrated with quartz crystal 

microblanace (QCM)
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http://www.differ.nl/en/magnum_plasma_en



Diagnostic suite provides spatially comprehensive, in-situ, 

real-time re-deposition data

• Thomson Scattering provides ne(r), Te(r)

– Single chord 2 cm from target, 1.8 mm resolution

• Visible Spectroscopy gives ILi(t), IOxygen(t), IH(t)

– 350 nm < λ < 800 nm, 0.2 nm, 5-10 Hz resolution

• Fast camera w/ Li-I (671 nm) filter gives ILi(r,t)

– 0.285 mm x 0.285 m, ~2 kHz resolution

Measure 

ionization      

(re-deposition) 

rates Siz,Li(r,t) 

and Siz,O(t)
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ADAS Collisional-Radiative Model (CRM) predicts substantial 

local re-deposition of Li, negligible re-deposition of O

ATJ Graphite TZM Molybdenum Tungsten

3 cm
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ATJ Graphite TZM Molybdenum Tungsten

Te (eV) 0.7 ↔ 1.7 0.6 ↔ 1.7 0.6 ↔ 1.7

ne (1020 m-3) 1.0 ↔ 3.8 1.0 ↔ 4.0 0.8 ↔ 3.8

ΓD (1023 m-2s-1) 0.6 ↔ 3.4 0.5 ↔ 3.6 0.4 ↔ 3.4

Li MFP (mm)* 31 ↔ 0.22 94 ↔ 0.21 137 ↔ 0.22

O MFP (mm)* 5.6e6 ↔ 250 7.0e7 ↔ 230 8.3e7 ↔ 250

# discharges 5 (bare)

3 (100 nm Li)

5 (bare)

8 (100 nm Li)

6 (bare)

6 (100 nm Li)

*calculated from ADAS Data Set (ADF11/SCD-96), www.adas.ac.uk, assuming Eejected=1 eV



L
i-

I 
In

te
n

s
it

y
 (

A
U

)

Li-I intensity continuously increased throughout discharge, 

while O-I intensity decays exponentially

Te =1.5 eV

ne= 1.5*1020 m-3

t0

Li-coated TZM Mo

Te =1.6 eV

ne= 1.9*1020 m-3
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τ ~ 0.95 ± 0.04 s

τ ~ 1.03 ± 0.09 s

I(t) = I0exp(-t/τ) + I1
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ne= 1.9*10 m

t0 + 9 min

Li-coated TZM Mo

O-I intensity also 

decreases by ~40% in 

second discharge



Physical Interpretation: Difference in local re-deposition 

increases relative concentration of Li over time

Li1+

D+ flux

Li atoms are ionized by plasma and re-deposit locally. λiz ~ O(1 mm)

O atoms remain neutral and are lost. λiz > 1 m  

Li1+
D+ flux

Li1+

γγγγ γγγγ γγγγ

O0+

e-

e-

e-
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t = t0 + τ

Li atoms O atoms

Li0+ O0+



Predict net erosion rates from local re-deposition with 1-D 

analytic/numerical model

• Areal impurity 

density n(r,t)

• Gross erosion rate 

Rero(r,n)
– Assume sputtering ~ 

cosθ, yield Y0 = 0.1
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cosθ, yield Y0 = 0.1

– Ejection energy assumed 

to be 1 eV

• From a point source:
– Sputtered distribution 

fsputter(r',t')

– Ionization distribution 

fiz(r',t')

11

v = ejected velocity

λiz = ionization MFP



Predict net erosion rates from local re-deposition with 1-D 

analytic/numerical model (continued)

• Re-deposition distribution fredep(r'):

• Total re-deposition rate Rredep(r,t):
Incomplete 

Gamma 
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• Differential equation for n(r,t):

12

Gamma 

function Γ(0,x) 

Fredep = re-deposition 

fraction



0.8

1

1.2

Surface impurity density evolves quickly for high λiz/σTe

• λiz/σTe = 185 (typical for O in Magnum)
– High escape probability

Initial condition: flat areal 

density profile n(r,t=0) = n0

Normalize time: 
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plasma column

σTe = HWHM of Te profile

Note: choice of σTe as 

normalization for r is arbitrary.  



Surface impurity density evolves slowly for low λiz/σTe

• λiz/σTe = 0.04 (typical for Li in Magnum)
– Low escape probability 

0.8

1

1.2
Initial condition: flat areal 

density profile n(r,t=0) = n0

Normalize time: 
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Average re-deposition fraction changes drastically between 

5 < λiz/σTe < 100

• Define 

a/σ

Li (in 

Magnum)

O (in 

Magnum)

assume flat areal 

density profile 

n(r,t=0) = n0 for |r| < a

n

n(r)
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λiz / σTe
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4.0

n0
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a-a

Future work: 

compare to data!



Compare coating lifetime in model with experimental data

• Assume emission intensity ~ re-deposition rate
– Fit an exponential curve to <Fredep(t)> when it begins decreasing

re
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e
p
(t

=
0

)>
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3

3.5

4

4.5

5

Initial comparison with data indicates importance of absolute 

sputter yield determination

• TRIM gives Y0=2e-4 for 20 eV D+ on O
– Does not take into account surface temperature
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ti

m
e
 (

s
)

10 Plasma Shots, 

I(t) = I0exp(-t/τ) + I1

τ calculated from 

spectroscopy data

ne
(1020 m-3)

Te

(eV)

λiz / σTe

1.50 1.50 190

Y0=0.001
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Initial comparison with data indicates importance of absolute 

sputter yield determination (continued)

• Mixed-material surface 

(D, O, Li)

• Sputtering only occurs off 

first few monoloyers

– Bulk nLi, nO unimportant

• Why does Li-I radiation 

Li atoms O atoms
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• Why does Li-I radiation 

increase continually?
– Even after O-I intensity has 

saturated

– If initially LiOH, should 

increase by factor of ~2 and 

stop

18

t = t0 + τ



Caveats

• λiz will also vary with σne

– But σne usually scales with σTe

• Other physics processes must be important
– Adsorption/Desorption, Evaporation, etc.

– Additional source/sink terms due to diffusion in the lithium material1

• Code assumes slow variation of λiz with r
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• Code assumes slow variation of λiz with r

• ADAS data set contains limited resolution
– Correct 2D interpolation between points is important

19

1R. Bastasz, J.A. Whaley, Fus. Eng. Design 2004



Future Work

• Refine analysis of spectroscopy data
– Apply spectrometer calibration to directly model the line emission and 

compare with absolute brightness

– Incorporate geometric factors accounting for sight line of spectrometer

– Goal: obtain quantitative agreement between simulations and 

measurements over wide range of λiz / σTe

• fredep values
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• fredep values

• "coating lifetime" τ

• Improve accuracy of model:

– Add in additional source/sink terms for specific materials

– Refine sputtering yields using Bodhansky/TRIM

– Time-resolved Te measurement from D line ratios

• Longer term (new experiments):

– Heated (liquid) samples, non-zero impact angle

– Additional coating materials (B, Sn, Sn-Li?)
20



Obtained measurements of D+ sputtering yield on Li-coated 

TZM at room temperature

Ion Beam

QCM
Li 

Evaporator

ACCELERATION AND FOCUSING

SYSTEM

HEAT SINK

FILAMENT ANODE

VELOCITY

MAGNET
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PLATES

+

VERTICAL

-

NSTXNSTX--UU APS DPP 2012 – Li coatings on TZM Mo,  Abrams (10/31/2012) 21

Translation 

Arm

Sample 

Holder

FOCUS

SUPPLY

SUPPLYSUPPLY

FILAMENT

- +

1
0
0
W

1
0
0

ANODE

ENERGY

SUPPLY

+ -

BEAM

+

BEAM

ION BEAM
FILTER

CONTROL BOX

CONTROL

SUPPLY

BOXPLATES

SUPPLY

DEFLEC.

- + -

2
M

2
M

K

RED

+

BLACK

-

VELOCITY

Ion Gun Chamber
Main Chamber

24.0"



Obtained measurements of D+ sputtering yield on Li-coated 

TZM at room temperature (continued)

• 2 keV D+ ions, beam current ≈2.0 µA

• Li thickness ≈ 1.1 µm

• Sputtered Li measured with dual-crystal QCM
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Beam Off Beam On

-2.5E-4 Hz/sec

-5.3E-4 Hz/sec



• Data Analysis:

• Sputter Yield (atoms/ion)1:

• Simplifying assumptions:

– All Li converted to Li2O (M=29.88 g/mol)

Obtained measurements of D+ sputtering yield on Li-coated 

TZM at room temperature (continued)

Note: 

Different 'M'

NSTXNSTX--UU APS DPP 2012 – Li coatings on TZM Mo,  Abrams (10/31/2012)

– All Li converted to Li2O (M=29.88 g/mol)

– Reflection term is negligible

• Results in a sputter yield of 0.26 ± 0.10 for 2 keV D+ on Li

– Previous work2 finds Y0= 0.091 ± 0.033 for 700 eV D+ incident on D-

saturated Li

– VFTRIM-3D simulation2 gives Y0=0.08 at 1000 eV

– This is a very preliminary data set that indicates higher erosion than 

previous studies. Further investigation is required.
1)  M. Coventry, Ph.D. Thesis, 2007

2)  J.P. Allain et. al, Nuclear Fusion, 2001
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